An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

Related tags

Deep LearningRASP
Overview

RASP

Setup

Mac or Linux

Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to install graphviz (the non-python part) and rlwrap on your machine. If these fail, you will still be able to use RASP, however: the interface will not be as nice without rlwrap, and drawing s-op computation flows will not be possible without graphviz. After having set up, you can run ./rasp.sh to start the RASP read-evaluate-print-loop.

Windows

Follow the instructions given in windows instructions.txt

The REPL

After having set up, if you are in mac/linux, you can run ./rasp.sh to start the RASP REPL. Otherwise, run python3 RASP_support/REPL.py Use Ctrl+C to quit a partially entered command, and Ctrl+D to exit the REPL.

Initial Environment

RASP starts with the base s-ops: tokens, indices, and length. It also has the base functions select, aggregate, and selector_width as described in the paper, a selector full_s created through select(1,1,==) that creates a "full" attention pattern, and several other library functions (check out RASP_support/rasplib.rasp to see them).

Additionally, the REPL begins with a base example, "hello", on which it shows the output for each created s-op or selector. This example can be changed, and toggled on and off, through commands to the REPL.

All RASP commands end with a semicolon. Commands to the REPL -- such as changing the base example -- do not.

Start by following along with the examples -- they are kept at the bottom of this readme.

Note on input types:

RASP expects inputs in four forms: strings, integers, floats, or booleans, handled respectively by tokens_str, tokens_int, tokens_float, and tokens_bool. Initially, RASP loads with tokens set to tokens_str, this can be changed by assignment, e.g.: tokens=tokens_int;. When changing the input type, you will also want to change the base example, e.g.: set example [0,1,2].

Note that assignments do not retroactively change the computation trees of existing s-ops!

Writing and Loading RASP files

To keep and load RASP code from files, save them with .rasp as the extension, and use the 'load' command without the extension. For example, you can load the examples file paper_examples.rasp in this repository to the REPL as follows:

>> load "paper_examples";

This will make (almost) all values in the file available in the loading environment (whether the REPL, or a different .rasp file): values whose names begin with an underscore remain private to the file they are written in. Loading files in the REPL will also print a list of all loaded values.

Syntax Highlighting

For the Sublime Text editor, you can get syntax highlighting for .rasp files as follows:

  1. Install package control for sublime (you might already have it: look in the menu [Sublime Text]->[Preferences] and see if it's there. If not, follow the instructions at https://packagecontrol.io/installation).
  2. Install the 'packagedev' package through package control ([Sublime Text]->[Preferences]->[Package Control], then type [install package], then [packagedev])
  3. After installing PackageDev, create a new syntax definition file through [Tools]->[Packages]->[Package Development]->[New Syntax Definition].
  4. Copy the contents of RASP_support/RASP.sublime-syntax into the new syntax definition file, and save it as RASP.sublime-syntax.

[Above is basically following the instructions in http://ilkinulas.github.io/programming/2016/02/05/sublime-text-syntax-highlighting.html , and then copying in the contents of the provided RASP.sublime-syntax file]

Examples

Play around in the REPL!

Try simple elementwise manipulations of s-ops:

>>  threexindices =3 * indices;
     s-op: threexindices
 	 Example: threexindices("hello") = [0, 3, 6, 9, 12] (ints)
>> indices+indices;
     s-op: out
 	 Example: out("hello") = [0, 2, 4, 6, 8] (ints)

Change the base example, and create a selector that focuses each position on all positions before it:

>> set example "hey"
>> prevs=select(indices,indices,<);
     selector: prevs
 	 Example:
 			     h e y
 			 h |      
 			 e | 1    
 			 y | 1 1  

Check the output of an s-op on your new base example:

>> threexindices;
     s-op: threexindices
 	 Example: threexindices("hey") = [0, 3, 6] (ints)

Or on specific inputs:

>> threexindices(["hi","there"]);
	 =  [0, 3] (ints)
>> threexindices("hiya");
	 =  [0, 3, 6, 9] (ints)

Aggregate with the full selection pattern (loaded automatically with the REPL) to compute the proportion of a letter in your input:

>> full_s;
     selector: full_s
 	 Example:
 			     h e y
 			 h | 1 1 1
 			 e | 1 1 1
 			 y | 1 1 1
>> my_frac=aggregate(full_s,indicator(tokens=="e"));
     s-op: my_frac
 	 Example: my_frac("hey") = [0.333]*3 (floats)

Note: when an s-op's output is identical in all positions, RASP simply prints the output of one position, followed by " * X" (where X is the sequence length) to mark the repetition.

Check if a letter is in your input at all:

>> "e" in tokens;
     s-op: out
 	 Example: out("hey") = [T]*3 (bools)

Alternately, in an elementwise fashion, check if each of your input tokens belongs to some group:

>> vowels = ["a","e","i","o","u"];
     list: vowels = ['a', 'e', 'i', 'o', 'u']
>> tokens in vowels;
     s-op: out
 	 Example: out("hey") = [F, T, F] (bools)

Draw the computation flow for an s-op you have created, on an input of your choice: (this will create a pdf in a subfolder comp_flows of the current directory)

>> draw(my_frac,"abcdeeee");
	 =  [0.5]*8 (floats)

Or simply on the base example:

>> draw(my_frac);
	 =  [0.333]*3 (floats)

If they bother you, turn the examples off, and bring them back when you need them:

>> examples off
>> indices;
     s-op: indices
>> full_s;
     selector: full_s
>> examples on
>> indices;
     s-op: indices
 	 Example: indices("hey") = [0, 1, 2] (ints)

You can also do this selectively, turning only selector or s-op examples on and off, e.g.: selector examples off.

Create a selector that focuses each position on all other positions containing the same token. But first, set the base example to "hello" for a better idea of what's happening:

>> set example "hello"
>> same_token=select(tokens,tokens,==);
     selector: same_token
 	 Example:
 			     h e l l o
 			 h | 1        
 			 e |   1      
 			 l |     1 1  
 			 l |     1 1  
 			 o |         1

Then, use selector_width to compute, for each position, how many other positions the selector same_token focuses it on. This effectively computes an in-place histogram over the input:

>> histogram=selector_width(same_token);
     s-op: histogram
 	 Example: histogram("hello") = [1, 1, 2, 2, 1] (ints)

For more complicated examples, check out paper_examples.rasp!

Experiments on Transformers

The transformers in the paper were trained, and their attention heatmaps visualised, using the code in this repository: https://github.com/tech-srl/RASP-exps

Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
The Face Mask recognition system uses AI technology to detect the person with or without a mask.

Face Mask Detection Face Mask Detection system built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Rohan Kasabe 4 Apr 05, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023