Automate issue discovery for your projects against Lightning nightly and releases.

Overview

Logo

Automated Testing for Lightning EcoSystem Projects

CI testing Build Status pre-commit.ci status


Automate issue discovery for your projects against Lightning nightly and releases.
You get CPUs, Multi-GPUs testing for free, and Slack notification alerts if issues arise!

How do I add my own Project?

Pre-requisites

Here are pre-requisites for your project before adding to the Lightning EcoSystem CI:

  • Your project already includes some Python tests with PyTorch Lightning as a dependency
  • You'll be a contact/responsible person to resolve any issues that the CI finds in the future for your project

Adding your own project config

  1. First, fork this project (with CLI or in browser) to be able to create a new Pull Request, and work within a specific branch.
    gh repo fork PyTorchLightning/ecosystem-ci
    cd ecosystem-ci/
  2. Copy the template file in configs folder and call it <my_project_name>.yaml.
    cp configs/template.yaml configs/<my_project_name>.yaml
    
  3. At the minimum, modify the HTTPS variable to point to your repository. See Configuring my project for more options.
    target_repository:
      HTTPS: https://github.com/MyUsername/MyProject.git
    ...
    If your project tests multiple configurations or you'd like to test against multiple Lightning versions such as master and release branches, create a config file for each one of them. As an example, have a look at metrics master and metrics release CI files.
  4. Add your config filename to either/both the GitHub CPU CI file or the Azure GPU CI file.
    • For example, for the GitHub CPU CI file we append our config into the pytest parametrization:
      ...
      jobs:
        pytest:
          ...
              config:
                - "PyTorchLightning/metrics_pl-release.yaml"
                - "PyTorchLightning/transformers_pl-release.yaml"
                - "MyUsername/myproject-release.yaml"
              include:
                - {os: "ubuntu-20.04", python-version: "3.8", config: "PyTorchLightning/metrics_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "PyTorchLightning/transformers_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "MyUsername/my_project-master.yaml"}
              exclude:
                - {os: "windows-2019", config: "PyTorchLightning/transformers_pl-release.yaml"}
      ...
    • For example, in the Azure GPU CI file file:
      ...
      jobs:
      - template: testing-template.yml
        parameters:
          configs:
          - "PyTorchLightning/metrics_pl-master.yaml"
          - "PyTorchLightning/metrics_pl-release.yaml"
          - "MyUsername/my_project-master.yaml"
  5. Add the responsible person(s) to CODEOWNERS for your organization folder or just the project.
    # MyProject
    /configs/Myusername/MyProject*    @Myusername
    
  6. Finally, create a draft PR to the repo!

(Optional). [wip] join our Slack channel to be notified if your project is breaking

Configuring my project

The config include a few different sections:

  • target_repository include your project
  • env (optional) define any environment variables required when running tests
  • dependencies listing all dependencies which are taken outside pip
  • testing defines specific pytest arguments and what folders shall be tested

All dependencies as well as the target repository is sharing the same template with the only required field HTTPS and all others are optional:

target_repository:
  HTTPS: https://github.com/PyTorchLightning/metrics.git
  username: my-nick  # Optional, used when checking out private/protected repo
  password: dont-tell-anyone # Optional, used when checking out private/protected repo
  token: authentication-token # Optional, overrides the user/pass when checking out private/protected repo
  checkout: master # Optional, checkout a particular branch or a tag
  install_extras: all # Refers to standard pip option to install some additional dependencies defined with setuptools, typically used as `<my-package>[<install_extras>]`.

# Optional, if any installation/tests require some env variables
env:
   MY_ENV_VARIABLE: "VAR"

copy_tests:
    - integrations # copied folder from the original repo into the running test directory
    # this is copied as we use the helpers inside integrations as regular python package
    - tests/__init__.py
    - tests/helpers

# Optional, additional pytest arguments and control which directory to test on
testing:
  dirs:
    - integrations
  pytest_args: --strict

Note: If you define some files as done above, and they are using internal-cross imports, you need to copy the __init__.py files from each particular package level.

The testing section provides access to the pytest run args and command.

testing:
  # by default pytest is called on all copied items/tests
  dirs:
    - integrations
  # OPTIONAL, additional pytest arguments
  pytest_args: --strict
Owner
Pytorch Lightning
Pytorch Lightning
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022