PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

Related tags

Deep LearningHoroPCA
Overview

HoroPCA

This code is the official PyTorch implementation of the ICML 2021 paper:

HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections
Ines Chami*, Albert Gu*, Dat Nguyen*, Christopher Ré
Stanford University
Paper: https://arxiv.org/abs/2106.03306

HoroPCA

Abstract. This paper studies Principal Component Analysis (PCA) for data lying in hyperbolic spaces. Given directions, PCA relies on: (1) a parameterization of subspaces spanned by these directions, (2) a method of projection onto subspaces that preserves information in these directions, and (3) an objective to optimize, namely the variance explained by projections. We generalize each of these concepts to the hyperbolic space and propose HoroPCA, a method for hyperbolic dimensionality reduction. By focusing on the core problem of extracting principal directions, HoroPCA theoretically better preserves information in the original data such as distances, compared to previous generalizations of PCA. Empirically, we validate that HoroPCA outperforms existing dimensionality reduction methods, significantly reducing error in distance preservation. As a data whitening method, it improves downstream classification by up to 3.9% compared to methods that don’t use whitening. Finally, we show that HoroPCA can be used to visualize hyperbolic data in two dimensions.

The code has an implementation of the HoroPCA method, as well as other methods for dimensionality reduction on manifolds, such as Principal Geodesic Analysis and tangent Principal Component Analysis.

Installation

This code was tested on Python3.7 and Pytorch 1.8.1. Start by installing the requirements:

pip install -r requirements.txt

Usage

Main script

Run hyperbolic dimensionality reduction experiments using the main.py script.

python main.py --help

optional arguments:
  -h, --help            show this help message and exit
  --dataset {smalltree,phylo-tree,bio-diseasome,ca-CSphd}
                        which datasets to use
  --model {pca,tpca,pga,bsa,hmds,horopca}
                        which dimensionality reduction method to use
  --metrics METRICS [METRICS ...]
                        which metrics to use
  --dim DIM             input embedding dimension to use
  --n-components N_COMPONENTS
                        number of principal components
  --lr LR               learning rate to use for optimization-based methods
  --n-runs N_RUNS       number of runs for optimization-based methods
  --use-sarkar          use sarkar to embed the graphs
  --sarkar-scale SARKAR_SCALE
                        scale to use for embeddings computed with Sarkar's
                        construction

Examples

1. Run HoroPCA on the smalltree dataset:

python main.py --dataset smalltree --model horopca --dim 10 --n-components 2

Output:

distortion: 	0.19 +- 0.00
frechet_var: 	7.15 +- 0.00

2. Run Euclidean PCA on the smalltree dataset:

python main.py --dataset smalltree --model pca --dim 10 --n-components 2

Output:

distortion: 	0.84 +- 0.00
frechet_var:    0.34 +- 0.00

Datasets

The possible dataset choices in this repo are {smalltree,phylo-tree,bio-diseasome,ca-CSphd}. To add a new dataset, add the corresponding edge list and embedding file in the data/ folder.

Citation

If you use this codebase, or otherwise found our work valuable, please cite:

@article{chami2021horopca,
  title={HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections},
  author={Chami, Ines and Gu, Albert and Nguyen, Dat and R{\'e}, Christopher},
  journal={arXiv preprint arXiv:2106.03306},
  year={2021}
}
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022