Meta Representation Transformation for Low-resource Cross-lingual Learning

Related tags

Deep LearningMetaXL
Overview

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning

This repo hosts the code for MetaXL, published at NAACL 2021.

[MetaXL: Meta Representation Transformation for Low- resource Cross-lingual Learning] (https://arxiv.org/pdf/2104.07908.pdf)

Mengzhou Xia, Guoqing Zheng, Subhabrata Mukherjee, Milad Shokouhi, Graham Neubig, Ahmed Hassan Awadallah

NAACL 2021

MetaXL is a meta-learning framework that learns a main model and a relatively small structure, called representation transformation network (RTN) through a bi-level optimization procedure with the goal to transform representations from auxiliary languages such that it benefits the target task the most.

Data

Please download [WikiAnn] (https://github.com/afshinrahimi/mmner), [MARC] (https://registry.opendata.aws/amazon-reviews-ml/), [SentiPers] (https://github.com/phosseini/sentipers) and [Sentiraama] (https://ltrc.iiit.ac.in/showfile.php?filename=downloads/sentiraama/) on its corresponding. Please refer to data/data_index.txt for data splits.

Scripts

The following script shows how to run metaxl on the named entity recognition task on Quechua.

python3 mtrain.py \
      --data_dir data_dir \
      --bert_model xlm-roberta-base \
      --tgt_lang qa \
      --task_name panx \
      --train_max_seq_length 200 \
      --max_seq_length 512 \
      --epochs 20 \
      --batch_size 10 \
      --method metaxl \
      --output_dir output_dir \
      --warmup_proportion 0.1 \
      --main_lr 3e-05 \
      --meta_lr 1e-06 \
      --train_size 1000\
      --target_train_size 100 \
      --source_languages en \
      --source_language_strategy specified \
      --layers 12 \
      --struct perceptron \
      --tied  \
      --transfer_component_add_weights \
      --tokenizer_dir None \
      --bert_model_type ori \
      --bottle_size 192 \
      --portion 2 \
      --data_seed 42  \
      --seed 11 \
      --do_train  \
      --do_eval 

The following script shows how to run metaxl on the sentiment analysis task on fa.

python3 mtrain.py  \
		--data_dir data_dir \
		--task_name sent \
		--bert_model xlm-roberta-base \
		--tgt_lang fa \
		--train_max_seq_length 256 \
		--max_seq_length 256 \
		--epochs 20 \
		--batch_size 10 \
		--method metaxl \
		--output_dir ${output_dir} \
		--warmup_proportion 0.1 \
		--main_lr 3e-05 \
		--meta_lr 1e-6 \
		--train_size 1000 \
		--target_train_size 100 \
		--source_language_strategy specified  \
		--source_languages en \
		--layers 12 \
		--struct perceptron \
		--tied  \
		--transfer_component_add_weights \
		--tokenizer_dir None  \
		--bert_model_type ori  \
		--bottle_size 192  \
		--portion 2 	\
		--data_seed 42 \
		--seed 11  \
		--do_train  \
		--do_eval

Citation

If you find MetaXL useful, please cite the following paper

@inproceedings{xia2021metaxl,
  title={MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning},
  author={Mengzhou, Xia and Zheng, Guoqing and Mukherjee, Subhabrata and Shokouhi, Milad and Newbig, Graham and Awadallah, Ahmed Hassan},
  journal={NAACL},
  year={2021},
}

This repository is released under MIT License. (See LICENSE)

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022