It's a powerful version of linebot

Overview

CTPS-FINAL

Linbot-sever.py

主程式

Algorithm.py

推薦演算法,媒合餐廳端資料與顧客端資料

config.ini

儲存 channel-access-token、channel-secret 資料

Preface

生活在成大將近4年,我們每天的午餐時間看著形形色色的店家,看似玲瑯滿目卻都吃膩了,中午覓食已經從期待變成壓力,每天問著「待會吃什麼?」,然後花費大量時間和心力,還是不知道要午餐吃什麼。因此我們希望運用Computational Thinking and Problem Solving 的思維,幫助大家解決這個困擾已久的問題。

Problem Definition

My target problem - 解決成大師生不知道午餐吃什麼的困擾?

Problem Decomposition

  • :成大師生
  • :午餐煩惱
  • :週一到週五 11點 ~ 14點
  • :成大周遭 1.5km 以內距離
  • constrain : 交通限制(交通工具)、店家營業時間限制、用戶人數(餐廳是否能容納)、預計等待及用餐時間

Pattern Recognition

  1. 大家通常到正餐時間才會想要吃甚麼
  2. 大家移動的距離有限,如果下午1點還有課,就會在學校附近用餐
  3. 同類型食物太頻繁吃會吃膩
  4. 學生會考慮cp值(有價格區間考量)
  5. 如果店家以人潮眾多就傾向換一間店家
  6. 會因為天氣而影響選擇(例如很熱,就會找有冷氣的餐廳)
  7. 朋友或認識的同學會一起用餐

Abstraction

(把Problem Decomposition的細項問題化)

  • 店家資料
      1. 如何取得店家資料?
      1. 如何確保店家資料即時性?
  • 用戶資料
      1. 如何取得用戶資料?
      1. 如何做到使用者優化?
  • 演算法
      1. 如何根據實際狀況設計演算法
      1. 怎麼測試演算法結果是否符合用戶需求
  • 訊息回推
      1. 用什麼管道回送推薦清單
      1. 介面如何優化
      1. 怎麼得知用戶實際使用情況

Algorithm

  • 店家資料
    • 如何取得店家資料?
      • 利用 google maps 爬蟲
      • 實地探索(地點限制在成大周圍,所以有一定可行性)
    • 如何確保店家資料即時性?
      • 設計用戶回報機制
      • 定期網路爬蟲
  • 用戶資料
    • 如何取得用戶資料?
      • 利用 linbot 與使用者溝通,取得使用者需求
    • 如何做到使用者優化?
      • 利用 richmenus 串接 linbot,藉由圖文選單輸入
  • 演算法
    • 如何根據實際狀況設計演算法
      • 找外在生活條件(例如 : 天氣很熱,那冷氣的需求權重就提高一點)
    • 怎麼測試演算法結果是否符合用戶需求
      • 請朋友實際使用,並根據意見做出修改
  • 訊息回推
    • 用什麼管道回送推薦清單
      • Linebot
    • 介面如何優化
      • 建置模板按鈕,讓畫面看起來乾淨一點
    • 怎麼得知用戶實際使用情況
      • 設計用戶評分機制
      • 根據用戶評分或意見,進行修正

Solution Proposal

final report ppt & demo

References

DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022