Augmented Traffic Control: A tool to simulate network conditions

Overview

Augmented Traffic Control

build-status-image pypi-version

Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/.

Overview

Augmented Traffic Control (ATC) is a tool to simulate network conditions. It allows controlling the connection that a device has to the internet. Developers can use ATC to test their application across varying network conditions, easily emulating high speed, mobile, and even severely impaired networks. Aspects of the connection that can be controlled include:

  • bandwidth
  • latency
  • packet loss
  • corrupted packets
  • packets ordering

In order to be able to shape the network traffic, ATC must be running on a device that routes the traffic and sees the real IP address of the device, like your network gateway for instance. This also allows any devices that route through ATC to be able to shape their traffic. Traffic can be shaped/unshaped using a web interface allowing any devices with a web browser to use ATC without the need for a client application.

ATC is made of multiple components that interact together:

  • atcd: The ATC daemon which is responsible for setting/unsetting traffic shaping. atcd exposes a Thrift interface to interact with it.
  • django-atc-api: A Django app based on Django Rest Framework that provides a RESTful interface to atcd.
  • django-atc-demo-ui: A Django app that provides a simple Web UI to use atc from a mobile phone.
  • django-atc-profile-storage: A Django app that can be used to save shaping profiles, making it easier to re-use them later without manually re-entering those settings.

By splitting ATC in sub-components, it make it easier to hack on it or build on top of it. While django-atc-demo-ui is shipped as part of ATC's main repository to allow people to be able to use ATC out of the box, by providing a REST API to atcd, it makes it relatively easy to interact with atcd via the command line and opens the path for the community to be able to build creative command line tools, web UI or mobile apps that interact with ATC.

ATC architecture

Requirements

Most requirements are handled automatically by pip, the packaging system used by ATC, and each ATC package may have different requirements and the README.md files of the respective packages should be checked for more details. Anyhow, some requirements apply to the overall codebase:

  • Python 2.7: Currently, ATC is only supported on python version 2.7.
  • Django 1.10: Currently, ATC is only supported using django version 1.10.

Installing ATC

The fact that ATC is splitted in multiple packages allows for multiple deployment scenarii. However, deploying all the packages on the same host is the simplest and most likely fitting most use cases.

To get more details on how to install/configure each packages, please refer to the packages' respective READMEs.

Packages

The easiest way to install ATC is by using pip.

pip install atc_thrift atcd django-atc-api django-atc-demo-ui django-atc-profile-storage

Django

Now that we have all the packages installed, we need to create a new Django project in which we will use our Django app.

django-admin startproject atcui
cd atcui

Now that we have our django project, we need to configure it to use our apps and we need to tell it how to route to our apps.

Open atcui/settings.py and enable the ATC apps by adding to INSTALLED_APPS:

INSTALLED_APPS = (
    ...
    # Django ATC API
    'rest_framework',
    'atc_api',
    # Django ATC Demo UI
    'bootstrap_themes',
    'django_static_jquery',
    'atc_demo_ui',
    # Django ATC Profile Storage
    'atc_profile_storage',
)

Now, open atcui/urls.py and enable routing to the ATC apps by adding the routes to urlpatterns:

...
...
from django.views.generic.base import RedirectView
from django.conf.urls import include

urlpatterns = [
    ...
    # Django ATC API
    url(r'^api/v1/', include('atc_api.urls')),
    # Django ATC Demo UI
    url(r'^atc_demo_ui/', include('atc_demo_ui.urls')),
    # Django ATC profile storage
    url(r'^api/v1/profiles/', include('atc_profile_storage.urls')),
    url(r'^$', RedirectView.as_view(url='/atc_demo_ui/', permanent=False)),
]

Finally, let's update the Django DB:

python manage.py migrate

Running ATC

All require packages should now be installed and configured. We now need to run the daemon and the UI interface. While we will run ATC straight from the command line in this example, you can refer to example sysvinit and upstart scripts.

atcd

atcd modifies network related settings and as such needs to run in privileged mode:

sudo atcd

Supposing eth0 is your interface to connect to the internet and eth1, your interface to connect to your lan, this should just work. If your setting is slightly different, use the command line arguments --atcd-wan and --atcd-lan to adapt to your configuration.

ATC UI

The UI on the other hand is a standard Django Web app and can be run as a normal user. Make sure you are in the directory that was created when you ran django-admin startproject atcui and run:

python manage.py runserver 0.0.0.0:8000

You should now be able to access the web UI at http://localhost:8000

ATC Code Structure

ATC source code is available under the atc directory, it is currently composed of:

  • atc_thrift the thrift interface's library
  • atcd the ATC daemon that runs on the router doing the traffic shaping
  • django-atc-api A django app that provides a RESTful interface to atcd
  • django-atc-demo-ui A django app that provides a simple demo UI leveraging the RESTful API
  • django-atc-profile-storage A django app that allows saving shaping profiles to DB allowing users to select their favorite profile from a list instead of re-entering all the profile details every time.

The chef directory contains 2 chef cookbooks:

  • atc A cookbook to deploy ATC. It also allows to deploy ATC in a Virtual Box VM in order to develop on ATC.
  • atclient Set up a Linux Desktop VM that can be used to test shaping end to end.

atcd

atcd is the daemon that runs on the router that does the shaping. Interaction with the daemon is done using thrift. The interface definition can be found in atc_thrift.thrift.

atc_thrift

atc_thrift defines the thrift interface to communicate with the atcd daemon.

django-atc-api

django-atc-api is a django app that provide a REST API to the atcd daemon. Web applications, command line tools can use the API in order to shape/unshape traffic.

django-atc-demo-ui

django-atc-demo-ui is a simple Web UI to enable/disable traffic shaping. The UI is mostly written in React

django-atc-profile-storage

django-atc-profile-storage allows saving profiles to DB. A typical use case will be to save a list of predefined/often used shaping settings that you want to be able to accessing in just a few clicks/taps.

Developing on ATC

To make ATC development easier, we use Virtual Box and Vagrant to provision and run a VM that will run the ATC daemon and the ATC UI from your git checkout.

Interacting with ATC will only shape the traffic within the VM and not on the host.

Setting up the environment

Note: vagrant is an easy way to set up a test environment, but virtualization will produce different results than a setup on bare-metal. We recommend using vagrant only for testing/development and using bare-metal for setups which require realistic shaping settings.

You will need to install VirtualBox, Vagrant and a couple of plugins:

  • VirtualBox
  • Vagrant
  • Chef DK
  • Install some vagrant plugins:
  • vagrant plugin install vagrant-berkshelf --plugin-version '>= 2.0.1'
  • vagrant plugin install vagrant-omnibus
  • Clone this repo: git clone [email protected]:facebook/augmented-traffic-control.git atc

Running ATC

Once in the repo, go to the chef/atc directory and run:

vagrant up trusty

This will take some time before it completes, once the VM is provision, SSH into it:

vagrant ssh trusty

You should now be able to access ATC at: http://localhost:8080/

Using the Sample Profiles

Once you've got ATC up and running, you can run the script utils/restore-profiles.sh to setup the set of default profiles.

The script needs to be passed a hostname:port with the location of your ATC instance:

utils/restore-profiles.sh localhost:8080

After doing this, you should see the 10 sample profiles listed below in your ATC instance:

  • 2G - Developing Rural
  • 2G - Developing Urban
  • 3G - Average
  • 3G - Good
  • Cable
  • DSL
  • Edge - Average
  • Edge - Good
  • Edge - Lossy
  • No Connectivity

Naturally, you cannot improve your natural network speed by selecting a faster profile than your service. For example, selecting the Cable profile will not make your network faster if your natural connection speed resembles DSL more closely.

Hacking on the code

Hacking on ATC is done from the host and tested in the VM. In order to reflect the changes, you will need to start the services manually.

Both atcd and atcui have their python libraries installed in a python virtualenv so you will need to activate the environment in order to be able to run the services.

The virtualenv is installed in /usr/local/atc/venv/bin/activate .

source /usr/local/atc/venv/bin/activate

Running the daemon

The atcd daemon is running under the root user privileges, all operations below needs to be done as root.

To run the daemon manually, first make sure it is not running in the background:

service atcd stop

And run the daemon:

atcd

Once you are happy with your changes and you want to test them, you will need to kill the daemon and restart it in order to apply the changes.

Running the API/UI

This is a django project and, when running the django built-in HTTP server, will detect code changes and reload automatically.

To run the HTTP REST API and UI:

cd /var/django && python manage.py runserver 0.0.0.0:8000
Owner
Meta Archive
These projects have been archived and are generally unsupported, but are still available to view and use
Meta Archive
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022