Training BERT with Compute/Time (Academic) Budget

Overview

Training BERT with Compute/Time (Academic) Budget

This repository contains scripts for pre-training and finetuning BERT-like models with limited time and compute budget. The code is based on the work presented in the following paper:

Peter Izsak, Moshe Berchansky, Omer Levy, How to Train BERT with an Academic Budget - (to appear at EMNLP 2021).

Installation

The pre-training and finetuning scripts are based on Deepspeed and HuggingFace Transformers libraries.

Preliminary Installation

We recommend creating a virtual environment with python 3.6+, PyTorch and apex.

Installation Requirements

pip install -r requirements.txt

We suggest running Deepspeed's utility ds_report and verify Deepspeed components can be compiled (JIT).

Dataset

The dataset directory includes scripts to pre-process the datasets we used in our experiments (Wikipedia, Bookcorpus). See dedicated README for full details.

Pretraining

Pretraining script: run_pretraining.py

For all possible pretraining arguments see: python run_pretraining.py -h

We highly suggest reviewing the various training features we provide within the library.

Example for training with the best configuration presented in our paper (24-layers/1024H/time-based learning rate schedule/fp16):
deepspeed run_pretraining.py \
  --model_type bert-mlm --tokenizer_name bert-large-uncased \
  --hidden_act gelu \
  --hidden_size 1024 \
  --num_hidden_layers 24 \
  --num_attention_heads 16 \
  --intermediate_size 4096 \
  --hidden_dropout_prob 0.1 \
  --attention_probs_dropout_prob 0.1 \
  --encoder_ln_mode pre-ln \
  --lr 1e-3 \
  --train_batch_size 4096 \
  --train_micro_batch_size_per_gpu 32 \
  --lr_schedule time \
  --curve linear \
  --warmup_proportion 0.06 \
  --gradient_clipping 0.0 \
  --optimizer_type adamw \
  --weight_decay 0.01 \
  --adam_beta1 0.9 \
  --adam_beta2 0.98 \
  --adam_eps 1e-6 \
  --total_training_time 24.0 \
  --early_exit_time_marker 24.0 \
  --dataset_path <dataset path> \
  --output_dir /tmp/training-out \
  --print_steps 100 \
  --num_epochs_between_checkpoints 10000 \
  --job_name pretraining_experiment \
  --project_name budget-bert-pretraining \
  --validation_epochs 3 \
  --validation_epochs_begin 1 \
  --validation_epochs_end 1 \
  --validation_begin_proportion 0.05 \
  --validation_end_proportion 0.01 \
  --validation_micro_batch 16 \
  --deepspeed \
  --data_loader_type dist \
  --do_validation \
  --use_early_stopping \
  --early_stop_time 180 \
  --early_stop_eval_loss 6 \
  --seed 42 \
  --fp16

Time-based Training

Pretraining can be limited to a time-based value by defining --total_training_time=24.0 (24 hours for example).

Time-based Learning Rate Scheduling

The learning rate can be scheduled to change according to the configured total training time. The argument --total_training_time controls the total time assigned for the trainer to run, and must be specified in order to use time-based learning rate scheduling.

Time-based Learning rate schedule

To select time-based learning rate scheduling, define --lr_schedule time, and define a shape for for the annealing curve (--curve=linear for example, as seen in the figure). The warmup phase of the learning rate is define by specifying a proportion (--warmup_proportion) which accounts for the time-budget proportion available in the training session (as defined by --total_training_time). For example, for a 24 hour training session, warmup_proportion=0.1 would account for 10% of 24 hours, that is, 2.4 hours (or 144 minutes) to reach peak learning rate. The learning rate will then be scheduled to reach 0 at the end of the time budget. We refer to the provided figure for an example.

Checkpoints and Finetune Checkpoints

There are 2 types of checkpoints that can be enabled:

  • Training checkpoint - saves model weights, optimizer state and training args. Defined by --num_epochs_between_checkpoints.
  • Finetuning checkpoint - saves model weights and configuration to be used for finetuning later on. Defined by --finetune_time_markers.

finetune_time_markers can be assigned multiple points in the training time-budget by providing a list of time markers of the overall training progress. For example --finetune_time_markers=0.5 will save a finetuning checkpoint when reaching 50% of training time budget. For multiple finetuning checkpoints, use commas without space 0.5,0.6,0.9.

Validation Scheduling

Enable validation while pre-training with --do_validation

Control the number of epochs between validation runs with --validation_epochs=

To control the amount of validation runs in the beginning and end (running more that validation_epochs) use validation_begin_proportion and validation_end_proportion to specify the proportion of time and, validation_epochs_begin and validation_epochs_end to control the custom values accordingly.

Mixed Precision Training

Mixed precision is supported by adding --fp16. Use --fp16_backend=ds to use Deepspeed's mixed precision backend and --fp16_backend=apex for apex (--fp16_opt controls optimization level).

Finetuning

Use run_glue.py to run finetuning for a saved checkpoint on GLUE tasks.

The finetuning script is identical to the one provided by Huggingface with the addition of our model.

For all possible pretraining arguments see: python run_glue.py -h

Example for finetuning on MRPC:
python run_glue.py \
  --model_name_or_path <path to model> \
  --task_name MRPC \
  --max_seq_length 128 \
  --output_dir /tmp/finetuning \
  --overwrite_output_dir \
  --do_train --do_eval \
  --evaluation_strategy steps \
  --per_device_train_batch_size 32 --gradient_accumulation_steps 1 \
  --per_device_eval_batch_size 32 \
  --learning_rate 5e-5 \
  --weight_decay 0.01 \
  --eval_steps 50 --evaluation_strategy steps \
  --max_grad_norm 1.0 \
  --num_train_epochs 5 \
  --lr_scheduler_type polynomial \
  --warmup_steps 50

Generating Pretraining Commands

We provide a useful script for generating multiple (or single) pretraining commands by using python generate_training_commands.py.

python generate_training_commands.py -h

	--param_file PARAM_FILE Hyperparameter and configuration yaml
  	--job_name JOB_NAME   job name
 	--init_cmd INIT_CMD   initialization command (deepspeed or python directly)

A parameter yaml must be defined with 2 main keys: hyperparameters with argument values defined as a list of possible values, and default_parameters as default values. Each generated command will be a possible combination of the various arguments specified in the hyperparameters section.

Example:

hyperparameters:
  param1: [val1, val2]
  param2: [val1, val2]

default_parameters:
  param3: 0.0

will result in:

deepspeed run_pretraining.py --param1=val1 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val1 --param2=val2 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val2 --param3=0.0

Citation

If you find this paper or this code useful, please cite this paper:

@article{izsak2021,
  author={Izsak, Peter and Berchansky, Moshe and Levy, Omer},
  title={How to Train BERT with an Academic Budget},
  journal={arXiv preprint arXiv:2104.07705},
  url = {https://arxiv.org/abs/2104.07705} 
  year={2021}
}
Owner
Intel Labs
Intel Labs
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021