CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

Overview

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP.

CLIP2Video is a video-text retrieval model based on CLIP (ViT-B/32), which transfers the image-language pre-training model to video-text retrieval in an end-to-end manner. Our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.

Pipeline Blocks

Introduction

This is the source code of CLIP2Video, a method for Video-Text Retrieval based on temporal correlations. It is built on top of the CLIP4Clip by ( Huaishao Luo et al.) in PyTorch.

Requirement

pip install -r requirements.txt 

Download data and Pre-trained Model

Supported public training sets:

  • MSR-VTT(9k)
  • MSR-VTT(full)
  • MSVD
  • VATEX-English Version

Supported public testing protocols:

  • MSR-VTT 1k-A protocol (SOTA)
  • MSR-VTT full protocol (SOTA)
  • MSVD(SOTA
  • VATEX-English version(SOTA

Download official video: Official videos of different data can be found as follows:

Pre-process

To train and test the above datasets: you should use sample_frame.py to transform video into frames.

python sample_frame.py --input_path [raw video path] --output_path [frame path]

(Optional) The splits and captions can be found in the links of used dataset. For the convenience, you can also use the split in data/ directly.

Download CLIP model

To train and test the above datasets based on pre-trained CLIP model, you should visit CLIP and download ViT-B/32.

Test Model

We provide three models trained on MSVD, MSR-VTT and VATEX-English.

Model Name checkpoint
CLIP2Video_MSVD link
CLIP2Video_MSRVTT9k link
CLIP2Video_VATEX link

To test the trained model, please refer test/.

(Optional) If the path of trained model(--checkpoint) doesn't exist, the parameters of basic CLIP (--clip_path) will be loaded.

Main Article Results of CLIP2Video

T2V:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 47.0 76.8 85.9 2 9.6
MSRVTT-9k 45.6 72.6 81.7 2 14.6
MSRVTT-Full 29.8 55.5 66.2 4 45.5
Vatex (English) random 1k5 split 57.3 90.0 95.5 1 3.6
Vatex (English) HGR split 61.2 90.9 95.6 1 3.4

V2T:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 58.7 85.6 91.6 1 4.3
MSRVTT-9k 43.5 72.3 82.1 2 10.2
MSRVTT-Full 54.6 82.1 90.8 1 5.3
Vatex (English) random 1k5 split 76.0 97.7 99.9 1 1.5
Vatex (English) HGR split 77.9 98.1 99.1 1 1.6

(Optional:) Clarification of different results in VATEX:

  1. In our paper, we do not strictly follow HGR's split, but randomly split the test set by ourselves, which is the split in

    • data/vatex_data/test1k5_sec_list.txt
  2. In HGR split, we adopt the totally same split following HGR, and the split can be seen as:

    • data/vatex_data/test_list.txt
    • data/vatex_data/val_list.txt

We will revise the results strictly following HGR split for fair comparison in the paper later!


Citation

If you find CLIP2Video useful in your work, you can cite the following paper:

@article{fang2021clip2video,
  title={CLIP2Video: Mastering Video-Text Retrieval via Image CLIP},
  author={Fang, Han and Xiong, Pengfei and Xu, Luhui and Chen, Yu},
  journal={arXiv preprint arXiv:2106.11097},
  year={2021}
}

Acknowledgments

Some components of this code implementation are adopted from CLIP and CLIP4Clip. We sincerely appreciate for their contributions.

TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022