Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Overview

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

This is code for a paper Learning View Priors for Single-view 3D Reconstruction by Hiroharu Kato and Tatsuya Harada.

For more details, please visit project page.

Environment

  • This code is tested on Python 2.7.

Testing pretrained models

Download datasets and pretrained models from here and extract them under data directory. This can be done by the following commands.

mkdir data
cd data
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1G5gelwQGniwGgyG92ls_dfc1VtLUiM3s' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1G5gelwQGniwGgyG92ls_dfc1VtLUiM3s" -O dataset.zip && rm -rf /tmp/cookies.txt
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=119D78nZ329J90yTkfSrq4imRuQ8ON5N_' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=119D78nZ329J90yTkfSrq4imRuQ8ON5N_" -O models.zip && rm -rf /tmp/cookies.txt
unzip dataset.zip
unzip models.zip
cd ../

Quantitative evaluation of our best model on ShapeNet dataset is done by the following command.

python ./mesh_reconstruction/test.py -ds shapenet -nt 0 -eid shapenet_multi_color_nv20_uvr_cc_long

This outputs

02691156 0.691549002544
02828884 0.59788288686
02933112 0.720973934558
02958343 0.804359183654
03001627 0.603543199669
03211117 0.593105481352
03636649 0.502730883482
03691459 0.673864365473
04090263 0.664089877796
04256520 0.654773500288
04379243 0.602735843742
04401088 0.767574659204
04530566 0.616663414002
all 0.653372787125

Other ShapeNet models are listed in test_shapenet.sh.

Drawing animated gif of ShapeNet reconstruction requires the dataset provided by [Kar et al. NIPS 2017].

cd data
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=17GjULuQZsn-s92PQFQSBzezDkonowIxR' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=17GjULuQZsn-s92PQFQSBzezDkonowIxR" -O lsm.tar.gz && rm -rf /tmp/cookies.txt
tar xvzf lsm.tar.gz
cd shapenet_release/renders/
find ./ -name "*.tar.gz" -exec tar xvzf {} \;
cd ../../../

Then, the following commands

mkdir tmp
bash make_gif.sh

output the following images.

Training

Training requires pre-trained AlexNet model.

cd data
mkdir caffemodel
cd caffemodel
wget http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
cd ../../

Training of the provided pre-trained models is done by

bash train_shapenet.sh
bash train_pascal.sh

Citation

@InProceedings{kato2019vpl,
    title={Learning View Priors for Single-view 3D Reconstruction},
    author={Hiroharu Kato and Tatsuya Harada},
    booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2019}
}
Owner
Hiroharu Kato
Ph.D student
Hiroharu Kato
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022