Python code for loading the Aschaffenburg Pose Dataset.

Overview

Aschaffenburg Pose Dataset (APD) DOI

This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and a description can be found at Zenodo. It contains trajectories as well as body poses of pedestrians and cyclists in road traffic recorded in Aschaffenburg, Germany. It is appropriate for training and testing methods for trajectory forecasting and intention prediction of vulnerable road users (VRUs) based on the past trajectory and body poses.

The body posture of the pedestrians and cyclists is available in the form of 2D and 3D poses. The 2D poses contain joint positions in an image coordinate system, while the 3D poses contain actual three-dimensional positions. The joints of the poses are shown in the picture below. The left skeleton shows the joints of the 2D poses and the right one shows the joints of the 3D poses. A detailed description and evaluation of the pose estimation method can be found in [1]. In addition to the trajectories and the poses, manually created labels of the respective motion states are included.

Usage

First download the dataset here and unzip the file. The actual Python module for loading and filtering the dataset can be found in the folder APD. In examples you find the example of how to use the code (plot_trajectories.py). The example loads the dataset from the provided path and plots the smoothed head trajectories in 2D from a bird's eye view (the poses are not visualized here). The trajectories can be filtered by VRU type and set using optional arguments:

Usage: python3 examples/plot_trajectories.py [-h] [-v VRU_TYPES] [-s SETS] path

Pipeline Arguments

positional arguments:
  path                  path to json files

optional arguments:
  -h, --help            show this help message and exit
  -v VRU_TYPES, --vru_types VRU_TYPES
                        select certain vru types for plotting ['ped', 'bike']
  -s SETS, --sets SETS  select certain sets for plotting ['train',
                        'validation', 'test']

Citation

If you find this dataset useful, please cite this paper (and refer the data as Aschaffenburg Pose Dataset or APD):

Kress, V. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. In: Pattern Recognition. ICPR International Workshops and Challenges, Springer International Publishing, 2020, pp. 57-71

Similar Datasets

Acknowledgment

This work was supported by “Zentrum Digitalisierung.Bayern”. In addition, the work is backed by the project DeCoInt2 , supported by the German Research Foundation (DFG) within the priority program SPP 1835: “Kooperativ interagierende Automobile”, grant numbers DO 1186/1-2 and SI 674/11-2.

References

[1] Kress, V. ; Jung, J. ; Zernetsch, S. ; Doll, K. ; Sick, B. : Human Pose Estimation in Real Traffic Scenes. In: IEEE Symposium Series on Computational Intelligence (SSCI), 2018, pp. 518–523, doi: 10.1109/SSCI.2018.8628660

Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022