Pre-Trained Image Processing Transformer (IPT)

Overview

Pre-Trained Image Processing Transformer (IPT)

By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao. [arXiv]

We study the low-level computer vision task (such as denoising, super-resolution and deraining) and develop a new pre-trained model, namely, image processing transformer (IPT). We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs. The IPT model is trained on these images with multi-heads and multi-tails. The pre-trained model can therefore efficiently employed on desired task after fine-tuning. With only one pre-trained model, IPT outperforms the current state-of-the-art methods on various low-level benchmarks.

MindSpore Code

Requirements

  • python 3
  • pytorch == 1.4.0
  • torchvision

Dataset

The benchmark datasets can be downloaded as follows:

For super-resolution:

Set5, Set14, B100, Urban100.

For denoising:

CBSD68, Urban100.

For deraining:

Rain100L.

The result images are converted into YCbCr color space. The PSNR is evaluated on the Y channel only.

Script Description

This is the inference script of IPT, you can following steps to finish the test of image processing tasks, like SR, denoise and derain, via the corresponding pretrained models.

Script Parameter

For details about hyperparameters, see option.py.

Evaluation

Pretrained models

The pretrained models are available in google drive

Evaluation Process

Inference example: For SR x2,x3,x4:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test Set5+Set14+B100+Urban100 --scale $SCALE

For Denoise 30,50:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test CBSD68+Urban100 --scale 1 --denoise --sigma $NOISY_LEVEL

For derain:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --scale 1 --derain

Results

  • Detailed results on image super-resolution task.
Method Scale Set5 Set14 B100 Urban100
VDSR X2 37.53 33.05 31.90 30.77
EDSR X2 38.11 33.92 32.32 32.93
RCAN X2 38.27 34.12 32.41 33.34
RDN X2 38.24 34.01 32.34 32.89
OISR-RK3 X2 38.21 33.94 32.36 33.03
RNAN X2 38.17 33.87 32.32 32.73
SAN X2 38.31 34.07 32.42 33.1
HAN X2 38.27 34.16 32.41 33.35
IGNN X2 38.24 34.07 32.41 33.23
IPT (ours) X2 38.37 34.43 32.48 33.76
Method Scale Set5 Set14 B100 Urban100
VDSR X3 33.67 29.78 28.83 27.14
EDSR X3 34.65 30.52 29.25 28.80
RCAN X3 34.74 30.65 29.32 29.09
RDN X3 34.71 30.57 29.26 28.80
OISR-RK3 X3 34.72 30.57 29.29 28.95
RNAN X3 34.66 30.52 29.26 28.75
SAN X3 34.75 30.59 29.33 28.93
HAN X3 34.75 30.67 29.32 29.10
IGNN X3 34.72 30.66 29.31 29.03
IPT (ours) X3 34.81 30.85 29.38 29.49
Method Scale Set5 Set14 B100 Urban100
VDSR X4 31.35 28.02 27.29 25.18
EDSR X4 32.46 28.80 27.71 26.64
RCAN X4 32.63 28.87 27.77 26.82
SAN X4 32.64 28.92 27.78 26.79
RDN X4 32.47 28.81 27.72 26.61
OISR-RK3 X4 32.53 28.86 27.75 26.79
RNAN X4 32.49 28.83 27.72 26.61
HAN X4 32.64 28.90 27.80 26.85
IGNN X4 32.57 28.85 27.77 26.84
IPT (ours) X4 32.64 29.01 27.82 27.26
  • Super-resolution result

  • Denoising result

  • Derain result

Citation

@misc{chen2020pre,
      title={Pre-Trained Image Processing Transformer}, 
      author={Chen, Hanting and Wang, Yunhe and Guo, Tianyu and Xu, Chang and Deng, Yiping and Liu, Zhenhua and Ma, Siwei and Xu, Chunjing and Xu, Chao and Gao, Wen},
      year={2021},
      eprint={2012.00364},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022