PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

Related tags

Deep LearningDARDet
Overview

DARDet

PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf].

Highlights:

1. We develop a new dense anchor-free rotated object detection architecture (DARDet), which directly predicts five parameters of OBB at each spatial location.

2. Our DARDet significantly achieve state-of-the-art performance on the DOTA, UCAS-AOD, and HRSC2016 datasets with high efficiency..

Benchmark and model zoo, with extracting code nudt.

Model Backbone MS Rotate Lr schd Inf time (fps) box AP Download
DARDet R-50-FPN - - 1x 12.7 77.61 cfgmodel
DARDet R-50-FPN - 2x 12.7 78.74 cfgmodel

Installation

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV

The compatible MMDetection and MMCV versions are as below. Please install the correct version of MMCV to avoid installation issues.

MMDetection version MMCV version
2.13.0 mmcv-full>=1.3.3, <1.4.0

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

  1. You can simply install mmdetection with the following commands: pip install mmdet

  2. Create a conda virtual environment and activate it.

    conda create -n open-mmlab python=3.7 -y
    conda activate open-mmlab
  3. Install PyTorch and torchvision following the official instructions, e.g.,

    conda install pytorch torchvision -c pytorch

    Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.

    E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  4. Install mmcv-full, we recommend you to install the pre-build package as below.

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

    Please replace {cu_version} and {torch_version} in the url to your desired one. For example, to install the latest mmcv-full with CUDA 11 and PyTorch 1.7.0, use the following command:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
    cd ..

    Or directly run

    pip install mmcv-full
  5. Clone the DARDet repository.

    cd DARDet

    
    
  6. Install build requirements and then install DARDet

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    
  7. Install DOTA_devkit

    sudo apt-get install swig
    cd DOTA_devkit/polyiou
    swig -c++ -python csrc/polyiou.i
    python setup.py build_ext --inplace
    

Prepare DOTA dataset.

It is recommended to symlink the dataset root to `ReDet/data`.

Here, we give an example for single scale data preparation of DOTA-v1.5.

First, make sure your initial data are in the following structure.
```
data/dota15
├── train
│   ├──images
│   └── labelTxt
├── val
│   ├── images
│   └── labelTxt
└── test
    └── images
```
Split the original images and create COCO format json. 
```
python DOTA_devkit/prepare_dota1_5.py --srcpath path_to_dota --dstpath path_to_split_1024
```
Then you will get data in the following structure
```
dota15_1024
├── test1024
│   ├── DOTA_test1024.json
│   └── images
└── trainval1024
    ├── DOTA_trainval1024.json
     └── images
```
For data preparation with data augmentation, refer to "DOTA_devkit/prepare_dota1_5_v2.py"

Examples:

Assume that you have already downloaded the checkpoints to work_dirs/DARDet_r50_fpn_1x/.

  • Test DARDet on DOTA.
python tools/test.py configs/DARDet/dardet_r50_fpn_1x_dcn_val.py \
    work_dirs/dardet_r50_fpn_1x_dcn_val/epoch_12.pth \ 
    --out work_dirs/dardet_r50_fpn_1x_dcn_val/res.pkl

*If you want to evaluate the result on DOTA test-dev, zip the files in work_dirs/dardet_r50_fpn_1x_dcn_val/result_after_nms and submit it to the evaluation server.

Inference

To inference multiple images in a folder, you can run:

python demo/demo_inference.py ${CONFIG_FILE} ${CHECKPOINT} ${IMG_DIR} ${OUTPUT_DIR}

Train a model

MMDetection implements distributed training and non-distributed training, which uses MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

*Important*: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.

Train with a single GPU

python tools/train.py ${CONFIG_FILE}

If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --validate (strongly recommended): Perform evaluation at every k (default value is 1, which can be modified like this) epochs during the training.
  • --work_dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume_from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume_from and load_from: resume_from loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally. load_from only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

Train with multiple machines

If you run MMDetection on a cluster managed with slurm, you can use the script slurm_train.sh.

./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16

You can check slurm_train.sh for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like infiniband.

Contact

Any question regarding this work can be addressed to [email protected].

This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022