(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Overview

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing by Haoyu He, Jing Zhang, Qiming Zhang and Dacheng Tao.


Grapy-ML:

GPM


Getting Started:

Environment:

  • Pytorch = 1.1.0

  • torchvision

  • scipy

  • tensorboardX

  • numpy

  • opencv-python

  • matplotlib

Data Preparation:

You need to download the three datasets. The CIHP dataset and ATR dataset can be found in this repository and our code is heavily borrowed from it as well.

Then, the datasets should be arranged in the following folder, and images should be rearranged with the provided file structure.

/data/dataset/

Testing:

The pretrain models and some trained models are provided here for testing and training.

Model Name Description Derived from
deeplab_v3plus_v3.pth The Deeplab v3+'s pretrain weights
CIHP_pretrain.pth The reproduced Deeplab v3+ model trained on CIHP dataset deeplab_v3plus_v3.pth
CIHP_trained.pth GPM model trained on CIHP dataset CIHP_pretrain.pth
deeplab_multi-dataset.pth The reproduced multi-task learning Deeplab v3+ model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_v3plus_v3.pth
GPM-ML_multi-dataset.pth Grapy-ML model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_multi-dataset.pth
GPM-ML_finetune_PASCAL.pth Grapy-ML model finetuned on PASCAL-Person-Part dataset GPM-ML_multi-dataset.pth

To test, run the following two scripts:

bash eval_gpm.sh
bash eval_gpm_ml.sh

Training:

GPM:

During training, you first need to get the Deeplab pretrain model(e.g. CIHP_dlab.pth) on each dataset. Such act aims to provide a trustworthy initial raw result for the GSA operation in GPM.

bash train_dlab.sh

The imageNet pretrain model is provided in the following table, and you should swith the dataset name and target classes to the dataset you want in the script. (CIHP: 20 classes, PASCAL: 7 classes and ATR: 18 classes)

In the next step, you should utilize the Deeplab pretrain model to further train the GPM model.

bash train_gpm.sh 

It is recommended to follow the training settings in our paper to reproduce the results.

GPM-ML:

Firstly, you can conduct the deeplab pretrain process by the following script:

bash train_dlab_ml.sh

The multi-dataset Deeplab V3+ is transformed as a simple multi-task task.

Then, you can train the GPM-ML model with the training set from all three datasets by:

bash train_gpm_ml_all.sh

After this phase, the first two levels of the GPM-ML model would be more robust and generalized.

Finally, you can try to finetune on each dataset by the unified pretrain model.

bash train_gpm_ml_pascal.sh

Citation:

@inproceedings{he2020grapy,
title={Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhang, Qiming and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}

Maintainer:

[email protected]

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022