Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Overview

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

This is the master thesis project by Giacomo Arcieri, written at the FZI Research Center for Information Technology (Karlsruhe, Germany).

Introduction

Model-Based Reinforcement Learning (MBRL) has recently become popular as it is expected to solve RL problems with fewer trials (i.e. higher sample efficiency) than model-free methods. However, it is not clear how much of the recent MBRL progress is due to improved algorithms or due to improved models. Hence, this work compares a set of mathematical methods that are commonly used as models for MBRL. This thesis aims to provide a benchmark to assess the model influence on RL algorithms. The evaluated models will be (deterministic) Neural Networks (NNs), ensembles of (deterministic) NNs, Bayesian Neural Networks (BNNs), and Gaussian Processes (GPs). Two different and innovative BNNs are applied: the Concrete Dropout NN and the Anchored Ensembling. The model performance is assessed on a large suite of different benchmarking environments, namely one OpenAI Gym Classic Control problem (Pendulum) and seven PyBullet-Gym tasks (MuJoCo implementation). The RL algorithm the model performance is assessed on is Model Predictive Control (MPC) combined with Random Shooting (RS).

Requirements

This project is tested on Python 3.6.

First, you can perform a minimal installation of OpenAI Gym with

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

Then, you can install Pybullet-Gym with

git clone https://github.com/benelot/pybullet-gym.git
cd pybullet-gym
pip install -e .

Important: Do not use python setup.py install or other Pybullet-Gym installation methods.

Finally, you can install all the dependencies with

pip install -r requirements.txt

Important: There are a couple of changes to make in two Pybullet-Gym envs:

  1. There is currently a mistake in Hopper. This project uses HopperMuJoCoEnv-v0, but this env imports the Roboschool locomotor instead of the MuJoCo locomotor. Open the file
pybullet-gym/pybulletgym/envs/mujoco/envs/locomotion/hopper_env.py

and change

from pybulletgym.envs.roboschool.robots.locomotors import Hopper

with

from pybulletgym.envs.mujoco.robots.locomotors.hopper import Hopper
  1. Ant has obs_dim=111 but only the first 27 obs are important, the others are only zeros. If it is true that these zeros do not affect performance, it is also true they slow down the training, especially for the Gaussian Process. Therefore, it is better to delete these unimportant obs. Open the file
pybullet-gym/pybulletgym/envs/mujoco/robots/locomotors/ant.py

and set obs_dim=27 and comment or delete line 25

np.clip(cfrc_ext, -1, 1).flat

Project Description

Models

The models are defined in the folder models:

  • deterministicNN.py: it includes the deterministic NN (NN) and the deterministic ensemble (ens_NNs).

  • PNN.py: here the Anchored Ensembling is defined following this example. PNN defines one NN of the Anchored Ensembling. This is needed to define ens_PNNs which is the Anchored Ensembling as well as the model applied in the evaluation.

  • ConcreteDropout.py: it defines the Concrete Dropout NN, mainly based on the Yarin Gal's notebook, but also on this other project. First, the ConcreteDropout Layer is defined. Then, the Concrete Dropout NN is designed (BNN). Finally, also an ensemble of Concrete Dropout NNs is defined (ens_BNN), but I did not use it in the model comparison (ens_BNN is extremely slow and BNN is already like an ensemble).

  • GP.py: it defines the Gaussian Process model based on gpflow. Two different versions are applied: the GPR and the SVGP (choose by setting the parameter gp_model). Only the GPR performance is reported in the evaluation because the SVGP has not even solved the Pendulum environment.

RL algorithm

The model performance is evaluated in the following files:

  1. main.py: it is defined the function main which takes all the params that are passed to MB_trainer. Five MB_trainer are initialized, each with a different seed, which are run in parallel. It is also possible to run two models in parallel by setting the param model2 as well.

  2. MB_trainer.py: it includes the initialization of the env and the model as well as the RL training loop. The function play_one_step computes one step of the loop. The model is trained with the function training_step. At the end of the loop, a pickle file is saved, wich includes all the rewards achieved by the model in all the episodes of the env.

  3. play_one_step.py: it includes all the functions to compute one step (i.e. to choose one action): the epsilon greedy policy for the exploration, the Information Gain exploration, and the exploitation of the model with MPC+RS (function get_action). The rewards as well as the RS trajectories are computed with the cost functions in cost_functions.py.

  4. training_step.py: first the relevant information is prepared by the function data_training, then the model is trained with the function training_step.

  5. cost_functions.py: it includes all the cost functions of the envs.

Other two files are contained in the folder rewards:

  • plot_rewards.ipynb: it is the notebook where the model performance is plotted. First, the 5 pickles associated with the 5 seeds are combined in only one pickle. Then, the performance is evaluated with various plots.

  • distribution.ipynb: this notebook inspects the distribution of the seeds in InvertedDoublePendulum (Section 6.9 of the thesis).

Results

Our results show significant differences among models performance do exist.

It is the Concrete Dropout NN the clear winner of the model comparison. It reported higher sample efficiency, overall performance and robustness across different seeds in Pendulum, InvertedPendulum, InvertedDoublePendulum, ReacherPyBullet, HalfCheetah, and Hopper. In Walker2D and Ant it was no worse than the others either.

Authors should be aware of the differences found and distinguish between improvements due to better algorithms or due to better models when they present novel methods.

The figures of the evaluation are reported in the folder rewards/images.

Acknowledgment

Special thanks go to the supervisor of this project David Woelfle.

Owner
Giacomo Arcieri
Giacomo Arcieri
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
202 Jan 06, 2023
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022