Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Overview

Hello from magnus

Magnus provides four capabilities for data teams:

  • Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

  • Run log store: A place to store run logs for reporting or re-running older runs. Along with capturing the status of execution, the run logs also capture code identifiers (commits, docker image digests etc), data hashes and configuration settings for reproducibility and audit.

  • Data Catalogs: A way to pass data between nodes of the graph during execution and also serves the purpose of versioning the data used by a particular run.

  • Secrets: A framework to provide secrets/credentials at run time to the nodes of the graph.

Design decisions:

  • Easy to extend: All the four capabilities are just definitions and can be implemented in many flavors.

    • Compute execution plan: You can choose to run the DAG on your local computer, in containers of local computer or off load the work to cloud providers or translate the DAG to AWS step functions or Argo workflows.

    • Run log Store: The actual implementation of storing the run logs could be in-memory, file system, S3, database etc.

    • Data Catalogs: The data files generated as part of a run could be stored on file-systems, S3 or could be extended to fit your needs.

    • Secrets: The secrets needed for your code to work could be in dotenv, AWS or extended to fit your needs.

  • Pipeline as contract: Once a DAG is defined and proven to work in local or some environment, there is absolutely no code change needed to deploy it to other environments. This enables the data teams to prove the correctness of the dag in dev environments while infrastructure teams to find the suitable way to deploy it.

  • Reproducibility: Run log store and data catalogs hold the version, code commits, data files used for a run making it easy to re-run an older run or debug a failed run. Debug environment need not be the same as original environment.

  • Easy switch: Your infrastructure landscape changes over time. With magnus, you can switch infrastructure by just changing a config and not code.

Magnus does not aim to replace existing and well constructed orchestrators like AWS Step functions or argo but complements them in a unified, simple and intuitive way.

Documentation

More details about the project and how to use it available here.

Installation

pip

magnus is a python package and should be installed as any other.

pip install magnus

Example Run

To give you a flavour of how magnus works, lets create a simple pipeline.

Copy the contents of this yaml into getting-started.yaml.


!!! Note

The below execution would create a folder called 'data' in the current working directory. The command as given should work in linux/macOS but for windows, please change accordingly.


> data/data.txt # For Linux/macOS next: success catalog: put: - "*" success: type: success fail: type: fail">
dag:
  description: Getting started
  start_at: step parameters
  steps:
    step parameters:
      type: task
      command_type: python-lambda
      command: "lambda x: {'x': int(x) + 1}"
      next: step shell
    step shell:
      type: task
      command_type: shell
      command: mkdir data ; env >> data/data.txt # For Linux/macOS
      next: success
      catalog:
        put:
          - "*"
    success:
      type: success
    fail:
      type: fail

And let's run the pipeline using:

 magnus execute --file getting-started.yaml --x 3

You should see a list of warnings but your terminal output should look something similar to this:

", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.530138", "end_time": "2022-01-18 11:46:08.530561", "duration": "0:00:00.000423", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] }, "step shell": { "name": "step shell", "internal_name": "step shell", "status": "SUCCESS", "step_type": "task", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.576522", "end_time": "2022-01-18 11:46:08.588158", "duration": "0:00:00.011636", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [ { "name": "data.txt", "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583", "catalog_relative_path": "20220118114608/data.txt", "catalog_handler_location": ".catalog", "stage": "put" } ] }, "success": { "name": "success", "internal_name": "success", "status": "SUCCESS", "step_type": "success", "message": "", "mock": false, "code_identities": [ { "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c", "code_identifier_type": "git", "code_identifier_dependable": false, "code_identifier_url": " ", "code_identifier_message": " " } ], "attempts": [ { "attempt_number": 0, "start_time": "2022-01-18 11:46:08.639563", "end_time": "2022-01-18 11:46:08.639680", "duration": "0:00:00.000117", "status": "SUCCESS", "message": "" } ], "user_defined_metrics": {}, "branches": {}, "data_catalog": [] } }, "parameters": { "x": 4 }, "run_config": { "executor": { "type": "local", "config": {} }, "run_log_store": { "type": "buffered", "config": {} }, "catalog": { "type": "file-system", "config": {} }, "secrets": { "type": "do-nothing", "config": {} } } }">
{
    "run_id": "20220118114608",
    "dag_hash": "ce0676d63e99c34848484f2df1744bab8d45e33a",
    "use_cached": false,
    "tag": null,
    "original_run_id": "",
    "status": "SUCCESS",
    "steps": {
        "step parameters": {
            "name": "step parameters",
            "internal_name": "step parameters",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.530138",
                    "end_time": "2022-01-18 11:46:08.530561",
                    "duration": "0:00:00.000423",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        },
        "step shell": {
            "name": "step shell",
            "internal_name": "step shell",
            "status": "SUCCESS",
            "step_type": "task",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.576522",
                    "end_time": "2022-01-18 11:46:08.588158",
                    "duration": "0:00:00.011636",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": [
                {
                    "name": "data.txt",
                    "data_hash": "8f25ba24e56f182c5125b9ede73cab6c16bf193e3ad36b75ba5145ff1b5db583",
                    "catalog_relative_path": "20220118114608/data.txt",
                    "catalog_handler_location": ".catalog",
                    "stage": "put"
                }
            ]
        },
        "success": {
            "name": "success",
            "internal_name": "success",
            "status": "SUCCESS",
            "step_type": "success",
            "message": "",
            "mock": false,
            "code_identities": [
                {
                    "code_identifier": "c5d2f4aa8dd354740d1b2f94b6ee5c904da5e63c",
                    "code_identifier_type": "git",
                    "code_identifier_dependable": false,
                    "code_identifier_url": "
        
         "
        ,
                    "code_identifier_message": "
        
         "
        
                }
            ],
            "attempts": [
                {
                    "attempt_number": 0,
                    "start_time": "2022-01-18 11:46:08.639563",
                    "end_time": "2022-01-18 11:46:08.639680",
                    "duration": "0:00:00.000117",
                    "status": "SUCCESS",
                    "message": ""
                }
            ],
            "user_defined_metrics": {},
            "branches": {},
            "data_catalog": []
        }
    },
    "parameters": {
        "x": 4
    },
    "run_config": {
        "executor": {
            "type": "local",
            "config": {}
        },
        "run_log_store": {
            "type": "buffered",
            "config": {}
        },
        "catalog": {
            "type": "file-system",
            "config": {}
        },
        "secrets": {
            "type": "do-nothing",
            "config": {}
        }
    }
}

You should see that data folder being created with a file called data.txt in it. This is according to the command in step shell.

You should also see a folder .catalog being created with a single folder corresponding to the run_id of this run.

To understand more about the input and output, please head over to the documentation.

Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022