A 3D sparse LBM solver implemented using Taichi

Overview

taichi_LBM3D

Background

Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure implemented using Taichi programming language, which is designed for porous medium flow simulation. Taking advantage of Taichi's computing structure, Taichi_LBM3D can be employed on shared-memory multi-core CPUs or massively parallel GPUs (OpenGL and CUDA). The code is around 400 lines, extensible and intuitive to understand.

Installation

This solver is developed using Taichi programming language (a python embedded programming language), install Taichi is required, by python3 -m pip install taichi.

Pyevtk is required for export simualtion result for visualization in Paraview, install Pyevtk by pip install pyevtk

Usage

There are several place for users to modify to fit their problems:

set computing backend

First the computing backend should be specified by ti.init(arch=ti.cpu) using parallel CPU backend, or by ti.init(arch=ti.gpu) to use OpenGL or CUDA(is available) as computing backend

set input geometry

LBM uses uniform mesh, the geometry is import as a ASCII file with 0 and 1, where 0 represent fluid point and 1 represent solid point. They are stored in format:

for k in range(nz)
  for j in range(ny)
    for i in range(nx)
      geometry[i,j,k]

You can specify the input file at: solid_np = init_geo('./img_ftb131.txt')

For two phase solver, a two phase distribution input file is also requred. This file is composed of -1 and 1 representing phase 1 and 2 respectively

set geometry size

Set geometry input file size here: nx,ny,nz = 131,131,131

set external force

Set expernal force applied on the fluid here: fx,fy,fz = 0.0e-6,0.0,0.0

set boundary conditions

There are three boundary conditions used in this code: Periodic boundary condition, fix pressure boundary condition, and fix velocity boundary condition We use the left side of X direction as an example: bc_x_left, rho_bcxl, vx_bcxl, vy_bcxl, vz_bcxl = 1, 1.0, 0.0e-5, 0.0, 0.0 set boundary condition type in bc_x_left; 0=periodic boundary condition, 1 = fix pressure boundary condition, 2 = fix velocity boundary condition if bc_x_left == 1 is select, then the desired pressure on the left side of X direction need to be given in rho_bcxl if bc_x_left == 2 is select, then the desired velocity on the left side of X direction need to be given in vx_bcxl, vy_bcxl, vz_bcxl

The same rules applied to the other five sides

set viscosity

Viscosity is set in niu = 0.1 for single phase solver

niu_l = 0.05
niu_g = 0.2

for two phase solver, niu_l for liquid phase, niu_g for phase 2

Additional parameters for two phase solver
  • Contact angle of the solid surface can be specified in psi_solid = 0.7 this value is the cosine of the desired contact angle, so the value is between -1 and 1
  • Interfical tension of two phases is set in CapA = 0.005
  • Boundary condition for the phase setting: bc_psi_x_left, psi_x_left = 1, -1.0 bc_psi_x_left = 0 for periodic boundary for the phase field, 1 = constant phase field value boundary. If bc_psi_x_left is set as 1, then the next parameter is desired constant phase for this boundary: psi_x_left should be set as -1.0 or 1.0 for phase 1 or phase 2 respectively.

All the quantities are in lattice units

Examples (Direct Numerical Simulation)

Flow over a vehicle: inertia dominated

image image

Single phase flow in a sandstone (Sandstone geometry is build from Micro-CT images at 7.5 microns): viscous dominated

image

Urban air flow: inertia dominated

image

Two Phase flow: oil (non-wetting phase) into a ketton carbonate rock saturated with water (wetting phase): capillary dominated

Alt text

Authors

Jianhui Yang @yjhp1016 Liang Yang @ly16302

License

MIT

Owner
Jianhui Yang
Researcher in CFD, porous medium flow and data science
Jianhui Yang
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022