A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Overview

Torch-RecHub

A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.

安装

pip install torch-rechub

主要特性

  • scikit-learn风格易用的API(fit、predict),即插即用

  • 训练过程与模型定义解耦,易拓展,可针对不同类型的模型设置不同的训练机制

  • 使用Pytorch原生Dataset、DataLoader,易修改,自定义数据

  • 高度模块化,支持常见Layer(MLP、FM、FFM、target-attention、self-attention、transformer等),容易调用组装成新模型

  • 支持常见排序模型(WideDeep、DeepFM、DIN、DCN、xDeepFM等)

  • 支持常见召回模型(DSSM、YoutubeDNN、MIND、SARSRec等)

  • 丰富的多任务学习支持

    • SharedBottom、ESMM、MMOE、PLE、AITM等模型
    • GradNorm、UWL等动态loss加权机制
  • 聚焦更生态化的推荐场景

    • 冷启动
    • 延迟反馈
    • 去偏
  • 支持丰富的训练机制(对比学习、蒸馏学习等)

  • 第三方高性能开源Trainer支持(Pytorch Lighting等)

  • 更多模型正在开发中

快速使用

from torch_rechub.rmodels.ranking import WideDeep, DeepFM, DIN
from torch_rechub.trainers import CTRTrainer
from torch_rechub.basic.utils import DataGenerator

dg = DataGenerator(x, y)
train_dataloader, val_dataloader, test_dataloader = dg.generate_dataloader()

model = DeepFM(deep_features=deep_features, fm_features=fm_features, mlp_params={"dims": [256, 128], "dropout": 0.2, "activation": "relu"})

ctr_trainer = CTRTrainer(model)
ctr_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)

多任务学习

from torch_rechub.models.multi_task import SharedBottom, ESMM, MMOE, PLE, AITM
from torch_rechub.trainers import MTLTrainer

model = MMOE(features, task_types, n_expert=3, expert_params={"dims": [64,32,16]}, tower_params_list=[{"dims": [8]}, {"dims": [8]}])

ctr_trainer = MTLTrainer(model)
ctr_trainer.fit(train_dataloader, val_dataloader)
auc = ctr_trainer.evaluate(ctr_trainer.model, test_dataloader)

Note:

所有模型均在大多数论文提及的多个知名公开数据集中测试,达到或者接近论文性能。

使用案例:Examples

每个数据集将会提供

  • 一个使用脚本,包含样本生成、模型训练与测试,并提供一套测评所用参数。
  • 一个预处理脚本,将原始数据进行预处理,转化成csv。
  • 数据格式参考文件(100条)。
  • 全量数据,统一的csv文件,提供高速网盘下载链接和原始数据链接。

初步规划TODO清单

Owner
Mincai Lai
Mincai Lai
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021