NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

Overview

NaturalCC

NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks, e.g., code summarization, code retrieval, code completion, code clone detection and type inference. Our vision is to bridge the gap between programming language and natural language through machine learning techniques.

Version Python pytorch license


Features

  • A collection of code corpus with data preprocessing
  • Performance benchmark
  • Mixed precision training
    • Nvidia APEX
    • Automatic Mixed Precision
  • Multi-GPU training
  • Better logging output
  • Various Implementations:
    • tensorflow gradient clipping
    • optimizers or learning schedulers
    • baseline models
    • binary data formats

🚀 Installation

Requirements

  • PyTorch version >= 1.6.0
  • Python version >= 3.6
  • GCC/G++ > 5.0
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • (optional) For faster training, you need to install NVIDIA's apex library.

1. Install prerequisite libraries

git clone https://github.com/xcodemind/naturalcc && cd naturalcc
pip install -r requirements.txt

Once you installed prerequisite libraries, you can check them via python -m env_test

2. Build or install NaturalCC

Export your NaturalCC cache directory (data and models will be saved in this directory) to user variables(~/.bashrc or ~/.zshrc).

> ~/.bashrc">
echo "export NCC=/data/ncc_data" >> ~/.bashrc

Note: PyCharm cannot get environment variables and, therefore, we recommend you to register your NCC variable at ncc/__init__.py.

Compile Cython files to accelerate programs and register NaturalCC into your pip list

# compile for debug
# python setup.py build_ext --inplace
# install 
pip install --editable ./

3. Half precision computation (optional)

NaturalCC supports half precision training.

  • If your Pytorch.__version__ < 1.6.0 and nvcc -V is runnable, please install apex.
  • Otherwise, use Automatic Mixed Precision (AMP). Available Now (set amp: 1 in yaml file, An example).

4. Install GCC/G++ with conda (if you do not have permission)

Since NCC is build via Cython, your GCC/G++ version should be greater than 4.9. If you have the root permission, update GCC/G++; otherwise, install GCC/G++ with conda.

# install GCC/G++ with conda
conda install -c anaconda gxx_linux-64
conda install -c conda-forge gcc_linux-64
cd ~/anaconda/envs/XXX/bin
ln -s x86_64-conda_cos6-linux-gnu-gcc gcc
ln -s x86_64-conda_cos6-linux-gnu-g++ g++
# check
conda deactivate
conda activate XXX
>> type "gcc/g++ -v" in terminals

📚 Dataset

Currently, we have processed the following datasets:

🤖 Implementations

Code retrieval (search)

Code completion

Heterogeneous mapping

Code summarization

📋 Experiments

Code Summarization

Dataset: Python (Wan et al.)

BLEU-4 METEOR ROUGE-L Cost Logs
Seq2Seq+Attn 25.57 14.40 39.41 0.09s/b click here
Tree2Seq+Attn 23.35 12.59 36.49 0.48s/b click here
Transformer 30.64 17.65 44.59 0.26s/b click here
Transformer+RPE 31.57 17.74 45.18 0.27s/b click here
PLBART 32.71 18.13 46.05 0.80s/b TBC

Code Retrieval

Dataset: CodeSearchNet (Husain et al.)

MRR Go Java JS PHP Python Ruby Cost Logs
NBOW 66.59 59.92 47.15 54.75 63.33 42.86 0.16s/b click here
ConV1d 70.87 60.49 38.81 61.92 67.29 36.53 0.30s/b click here
BiRNN 65.80 48.60 23.23 51.36 48.28 19.35 0.74s/b click here
SelfAttn 78.45 66.55 50.38 65.78 79.09 47.96 0.25s/b click here

Code Completion

Dataset: Py150 (official processed) (raw)

MRR Attr Num Name Param Tokens Cost Logs
LSTM 51.67 47.45 46.52 66.06 73.73 0.31s/b click here
GTP-2 70.37 62.20 63.84 73.54 82.17 0.43s/b click here
TravTrans 72.08 68.55 76.33 71.08 83.17 0.43s/b click here

Type Inference

Dataset: CodeSearchNet-Java (Husain et al.)

[email protected] (All types) [email protected] (All types) [email protected] (Any types) [email protected] (Any types) Cost Logs
DeepTyper 0.52 0.67 0.43 0.67 0.42s/b TBC
Transformer 0.32 0.64 0.37 0.75 0.85s/b TBC

Heterogeneous Mapping

Dataset: OpenCL (Grewe et al.)

Accuracy AMD NVIDIA
Static mapping 58.82 56.91
Decision tree 70.29 74.56
Inst2vec 82.79 81.76
DeepTune 83.24 80.15

🏫 Examples & Tutorials

All the running commands here should be executed in the root of project folder (the path of your naturalcc). For example, in my environment I will stay at /data/wanyao/Dropbox/ghproj-v100/naturalcc.

We also have more detailed READMEs to start your tutorial of NaturalCC.

Step 1: Download and process a dataset from datasets, and follow the instructions from the README.md file.

# ref: dataset/python_wan/README.md
# download dataset
bash dataset/python_wan/download.sh
# clean data
python -m dataset.python_wan.clean
# cast data attributes into different files
python -m dataset.python_wan.attributes_cast

# ref: dataset/python_wan/summarization/README.md
# save code tokens and docstirng tokens into MMAP format
python -m dataset.python_wan.summarization.preprocess

Step 2 (optional): Register your self-defined models

  • If you want to create a new model, please add your model at ncc/models and ncc/modules.

  • If your training policy are more complex than we thought, you should update your criterions and training procedure at ncc/criterions and ncc/trainers, respectively.

    Do not forget to update your self defined module at ncc/XX/__init__.py.

Step 3: Training and inference.

  • Select a task and a model from task list and follow the instructions in its README.md to start your learning.
# ref: run/summarization/transformer/README.md
# train
CUDA_VISIBLE_DEVICES=0,1,2,3 nohup python -m run.summarization.transformer.train -f config/python_wan/python > run/summarization/transformer/config/python_wan/python.log 2>&1 &
# inference
CUDA_VISIBLE_DEVICES=0 python -m run.summarization.transformer.eval -f config/python_wan/python -o run/summarization/transformer/config/python_wan/python.txt

FAQ

Please fell free to contact me if you have any troubles.

😘 License and Acknowledgement

NaturalCC is MIT-licensed. The license applies to the pre-trained models as well. This project is also highly inspired by Fairseq and AllenNLP.

🔗 Related Links

NaturalCC-demo
About us: XCodeMind

❤️ Citation

Please cite as:

under reviewing
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022