This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

Overview

BMW Semantic Segmentation GPU/CPU Inference API

This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit.

The training GUI (also based on the Gluoncv CV toolkit ) for the Semantic Segmentation workflow will be published soon.

A sample inference model is provided with this repository for testing purposes.

This repository can be deployed using docker.

Note: To be able to use the sample inference model provided with this repository make sure to use git clone and avoid downloading the repository as ZIP because it will not download the actual model stored on git lfs but just the pointer instead

api

Prerequisites

  • Ubuntu 18.04 or 20.04 LTS
  • Windows 10 pro with hyper-v enabled and docker desktop
  • NVIDIA Drivers (410.x or higher)
  • Docker CE latest stable release
  • NVIDIA Docker 2
  • Git lfs (large file storage) : installation

Note: the windows deployment supports only CPU version thus nvidia driver and nvidia docker are not required

Check for prerequisites

To check if you have docker-ce installed:

docker --version

To check if you have nvidia-docker2 installed:

dpkg -l | grep nvidia-docker2

nvidia-docker2

To check your nvidia drivers version, open your terminal and type the command nvidia-smi

nvidia-smi

Install prerequisites

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Install NVIDIA Drivers (410.x or higher) and NVIDIA Docker for GPU by following the official docs

Build The Docker Image

To build the docker environment, run the following command in the project's directory:

  • For GPU Build:
docker build -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Behind a proxy

  • For GPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_gpu -f ./GPU/dockerfile .
  • For CPU Build:
docker build --build-arg http_proxy='' --build-arg https_proxy='' -t gluoncv_segmentation_inference_api_cpu -f ./CPU/dockerfile .

Run the docker container

To run the inference API go the to the API's directory and run the following:

Using Linux based docker:

  • For GPU:
docker run --gpus '"device=<- gpu numbers seperated by commas ex:"0,1,2" ->"' -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_gpu
  • For CPU:
docker run -itv $(pwd)/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu
  • For Windows
docker run -itv ${PWD}/models:/models -p <port-of-your-choice>:4343 gluoncv_segmentation_inference_api_cpu

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_URL>:<Docker_host_port>/docs

The 'predict_batch' endpoint is not shown on swagger. The list of files input is not yet supported.

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again

/detect (POST)

Performs inference on specified model, image, and returns json file

/get_labels (POST)

Returns all of the specified model labels with their hashed values

/models (GET)

Lists all available models

/models/{model_name}/load (GET)

Loads the specified model. Loaded models are stored and aren't loaded again

/models/{model_name}/predict (POST)

Performs inference on specified model, image, and returns json file (exactly like detect)

/models/{model_name}/predict_image (POST)

Performs inference on specified model, image, and returns the image with transparent segments on it.

/models/{model_name}/inference (POST)

Performs inference on specified model,image, and returns the segments only (image)

inference

/models/{model_name}/labels (GET)

Returns all of the specified model labels

/models/{model_name}/config (GET)

Returns the specified model's configuration

Model structure

The folder "models" contains sub-folders of all the models to be loaded.

You can copy your model sub-folder generated after training ( training GUI will be published soon ) , put it inside the "models" folder in your inference repos and you're all set to infer.

The model sub-folder should contain the following :

  • model_best.params

  • palette.txt If you don't have your own palette, you can generate a random one using the command below in your project's repository and copy palette.txt to your model directory:

python3 generate_random_palette.py
  • configuration.json

The configuration.json file should look like the following :

{
    "inference_engine_name" : "gluonsegmentation",
    "backbone": "resnet101",
    "batch-size": 4,
    "checkname": "bmwtest",
    "classes": 3,
    "classesname": [
        "background",
        "pad",
        "circle"
    ],
    "network": "fcn",
    "type":"segmentation",
    "epochs": 10,
    "lr": 0.001,
    "momentum": 0.9,
    "num_workers": 4,
    "weight-decay": 0.0001
}

Acknowledgements

  • Roy Anwar,Beirut, Lebanon
  • Hadi Koubeissy, inmind.ai, Beirut, Lebanon
Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021