Learning Continuous Signed Distance Functions for Shape Representation

Related tags

Deep LearningDeepSDF
Overview

DeepSDF

This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et al. See the paper here.

DeepSDF Video

Citing DeepSDF

If you use DeepSDF in your research, please cite the paper:

@InProceedings{Park_2019_CVPR,
author = {Park, Jeong Joon and Florence, Peter and Straub, Julian and Newcombe, Richard and Lovegrove, Steven},
title = {DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}

File Organization

The various Python scripts assume a shared organizational structure such that the output from one script can easily be used as input to another. This is true for both preprocessed data as well as experiments which make use of the datasets.

Data Layout

The DeepSDF code allows for pre-processing of meshes from multiple datasets and stores them in a unified data source. It also allows for separation of meshes according to class at the dataset level. The structure is as follows:

<data_source_name>/
    .datasources.json
    SdfSamples/
        <dataset_name>/
            <class_name>/
                <instance_name>.npz
    SurfaceSamples/
        <dataset_name>/
            <class_name>/
                <instance_name>.ply

Subsets of the unified data source can be reference using split files, which are stored in a simple JSON format. For examples, see examples/splits/.

The file datasources.json stores a mapping from named datasets to paths indicating where the data came from. This file is referenced again during evaluation to compare against ground truth meshes (see below), so if this data is moved this file will need to be updated accordingly.

Experiment Layout

Each DeepSDF experiment is organized in an "experiment directory", which collects all of the data relevant to a particular experiment. The structure is as follows:

<experiment_name>/
    specs.json
    Logs.pth
    LatentCodes/
        <Epoch>.pth
    ModelParameters/
        <Epoch>.pth
    OptimizerParameters/
        <Epoch>.pth
    Reconstructions/
        <Epoch>/
            Codes/
                <MeshId>.pth
            Meshes/
                <MeshId>.pth
    Evaluations/
        Chamfer/
            <Epoch>.json
        EarthMoversDistance/
            <Epoch>.json

The only file that is required to begin an experiment is 'specs.json', which sets the parameters, network architecture, and data to be used for the experiment.

How to Use DeepSDF

Pre-processing the Data

In order to use mesh data for training a DeepSDF model, the mesh will need to be pre-processed. This can be done with the preprocess_data.py executable. The preprocessing code is in C++ and has the following requirements:

With these dependencies, the build process follows the standard CMake procedure:

mkdir build
cd build
cmake ..
make -j

Once this is done there should be two executables in the DeepSDF/bin directory, one for surface sampling and one for SDF sampling. With the binaries, the dataset can be preprocessed using preprocess_data.py.

Preprocessing with Headless Rendering

The preprocessing script requires an OpenGL context, and to acquire one it will open a (small) window for each shape using Pangolin. If Pangolin has been compiled with EGL support, you can use the "headless" rendering mode to avoid the windows stealing focus. Pangolin's headless mode can be enabled by setting the PANGOLIN_WINDOW_URI environment variable as follows:

export PANGOLIN_WINDOW_URI=headless://

Training a Model

Once data has been preprocessed, models can be trained using:

python train_deep_sdf.py -e <experiment_directory>

Parameters of training are stored in a "specification file" in the experiment directory, which (1) avoids proliferation of command line arguments and (2) allows for easy reproducibility. This specification file includes a reference to the data directory and a split file specifying which subset of the data to use for training.

Visualizing Progress

All intermediate results from training are stored in the experiment directory. To visualize the progress of a model during training, run:

python plot_log.py -e <experiment_directory>

By default, this will plot the loss but other values can be shown using the --type flag.

Continuing from a Saved Optimization State

If training is interrupted, pass the --continue flag along with a epoch index to train_deep_sdf.py to continue from the saved state at that epoch. Note that the saved state needs to be present --- to check which checkpoints are available for a given experiment, check the `ModelParameters', 'OptimizerParameters', and 'LatentCodes' directories (all three are needed).

Reconstructing Meshes

To use a trained model to reconstruct explicit mesh representations of shapes from the test set, run:

python reconstruct.py -e <experiment_directory>

This will use the latest model parameters to reconstruct all the meshes in the split. To specify a particular checkpoint to use for reconstruction, use the --checkpoint flag followed by the epoch number. Generally, test SDF sampling strategy and regularization could affect the quality of the test reconstructions. For example, sampling aggressively near the surface could provide accurate surface details but might leave under-sampled space unconstrained, and using high L2 regularization coefficient could result in perceptually better but quantitatively worse test reconstructions.

Shape Completion

The current release does not include code for shape completion. Please check back later!

Evaluating Reconstructions

Before evaluating a DeepSDF model, a second mesh preprocessing step is required to produce a set of points sampled from the surface of the test meshes. This can be done as with the sdf samples, but passing the --surface flag to the pre-processing script. Once this is done, evaluations are done using:

python evaluate.py -e <experiment_directory> -d <data_directory> --split <split_filename>
Note on Table 3 from the CVPR '19 Paper

Given the stochastic nature of shape reconstruction (shapes are reconstructed via gradient descent with a random initialization), reconstruction accuracy will vary across multiple reruns of the same shape. The metrics listed in Table 3 for the "chair" and "plane" are the result of performing two reconstructions of each shape and keeping the one with the lowest chamfer distance. The code as released does not support this evaluation and thus the reproduced results will likely differ from those produced in the paper. For example, our test run with the provided code produced Chamfer distance (multiplied by 103) mean and median of 0.157 and 0.062 respectively for the "chair" class and 0.101 and 0.044 for the "plane" class (compared to 0.204, 0.072 for chairs and 0.143, 0.036 for planes reported in the paper).

Examples

Here's a list of commands for a typical use case of training and evaluating a DeepSDF model using the "sofa" class of the ShapeNet version 2 dataset.

# navigate to the DeepSdf root directory
cd [...]/DeepSdf

# create a home for the data
mkdir data

# pre-process the sofas training set (SDF samples)
python preprocess_data.py --data_dir data --source [...]/ShapeNetCore.v2/ --name ShapeNetV2 --split examples/splits/sv2_sofas_train.json --skip

# train the model
python train_deep_sdf.py -e examples/sofas

# pre-process the sofa test set (SDF samples)
python preprocess_data.py --data_dir data --source [...]/ShapeNetCore.v2/ --name ShapeNetV2 --split examples/splits/sv2_sofas_test.json --test --skip

# pre-process the sofa test set (surface samples)
python preprocess_data.py --data_dir data --source [...]/ShapeNetCore.v2/ --name ShapeNetV2 --split examples/splits/sv2_sofas_test.json --surface --skip

# reconstruct meshes from the sofa test split (after 2000 epochs)
python reconstruct.py -e examples/sofas -c 2000 --split examples/splits/sv2_sofas_test.json -d data --skip

# evaluate the reconstructions
python evaluate.py -e examples/sofas -c 2000 -d data -s examples/splits/sv2_sofas_test.json 

Team

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove

Acknowledgements

We want to acknowledge the help of Tanner Schmidt with releasing the code.

License

DeepSDF is relased under the MIT License. See the LICENSE file for more details.

Owner
Meta Research
Meta Research
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022