Learnable Boundary Guided Adversarial Training (ICCV2021)

Overview

Learnable Boundary Guided Adversarial Training

This repository contains the implementation code for the ICCV2021 paper:
Learnable Boundary Guided Adversarial Training (https://arxiv.org/pdf/2011.11164.pdf)

If you find this code or idea useful, please consider citing our work:

@article{cui2020learnable,
  title={Learnable boundary guided adversarial training},
  author={Cui, Jiequan and Liu, Shu and Wang, Liwei and Jia, Jiaya},
  journal={arXiv preprint arXiv:2011.11164},
  year={2020}
}

Overview

In this paper, we proposed the "Learnable Boundary Guided Adversarial Training" to preserve high natural accuracy while enjoy strong robustness for deep models. An interesting phenomenon in our exploration shows that natural classifier boundary can benefit model robustness to some degree, which is different from the previous work that the improved robustness is at cost of performance degradation on natural data. Our method creates new state-of-the-art model robustness on CIFAR-100 without extra real or Synthetic data under auto-attack benchmark.

image

Results and Pretrained models

`
Models are evaluated under the strongest AutoAttack(https://github.com/fra31/auto-attack) with epsilon 0.031.

Our CIFAR-100 models:
CIFAR-100-LBGAT0-wideresnet-34-10 70.25 vs 27.16
CIFAR-100-LBGAT6-wideresnet-34-10 60.64 vs 29.33
CIFAR-100-LBGAT6-wideresnet-34-20 62.55 vs 30.20

Our CIFAR-10 models:
CIFAR-10-LBGAT0-wideresnet-34-10 88.22 vs 52.86
CIFAR-10-LBGAT0-wideresnet-34-20 88.70 vs 53.57

CIFAR-100 L-inf

Note: this is one partial results list for comparisons with methods without using additional data up to 2020/11/25. Full list can be found at https://github.com/fra31/auto-attack. TRADES (alpha=6) is trained with official open-source code at https://github.com/yaodongyu/TRADES.

# Method Model Natural Acc Robust Acc (AutoAttack)
1 LBGAT (Ours) WRN-34-20 62.55 30.20
2 (Gowal et al. 2020) WRN-70-16 60.86 30.03
3 LBGAT (Ours) WRN-34-10 60.64 29.33
4 (Wu et al. 2020) WRN-34-10 60.38 28.86
5 LBGAT (Ours) WRN-34-10 70.25 27.16
6 (Chen et al. 2020) WRN-34-10 62.15 26.94
7 (Zhang et al. 2019) TRADES (alpha=6) WRN-34-10 56.50 26.87
8 (Sitawarin et al. 2020) WRN-34-10 62.82 24.57
9 (Rice et al. 2020) RN-18 53.83 18.95

CIFAR-10 L-inf

Note: this is one partial results list for comparisons with previous published methods without using additional data up to 2020/11/25. Full list can be found at https://github.com/fra31/auto-attack. TRADES (alpha=6) is trained with official open-source code at https://github.com/yaodongyu/TRADES. “*” denotes methods aiming to speed up adversarial training.

# Method Model Natural Acc Robust Acc (AutoAttack)
1 LBGAT (Ours) WRN-34-20 88.70 53.57
2 (Zhang et al.) WRN-34-10 84.52 53.51
3 (Rice et al. 2020) WRN-34-20 85.34 53.42
4 LBGAT (Ours) WRN-34-10 88.22 52.86
5 (Qin et al., 2019) WRN-40-8 86.28 52.84
6 (Zhang et al. 2019) TRADES (alpha=6) WRN-34-10 84.92 52.64
7 (Chen et al., 2020b) WRN-34-10 85.32 51.12
8 (Sitawarin et al., 2020) WRN-34-10 86.84 50.72
9 (Engstrom et al., 2019) RN-50 87.03 49.25
10 (Kumari et al., 2019) WRN-34-10 87.80 49.12
11 (Mao et al., 2019) WRN-34-10 86.21 47.41
12 (Zhang et al., 2019a) WRN-34-10 87.20 44.83
13 (Madry et al., 2018) AT WRN-34-10 87.14 44.04
14 (Shafahi et al., 2019)* WRN-34-10 86.11 41.47
14 (Wang & Zhang, 2019)* WRN-28-10 92.80 29.35

Get Started

Befor the training, please create the directory 'Logs' via the command 'mkdir Logs'.

Training

bash sh/train_lbgat0_cifar100.sh

Evaluation

before running the evaluation, please download the pretrained model.

bash sh/eval_autoattack.sh

Acknowledgements

This code is partly based on the TRADES and autoattack.

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022