An implementation of based on pytorch and mmcv

Overview

FisherPruning-Pytorch

An implementation of <Group Fisher Pruning for Practical Network Compression> based on pytorch and mmcv


Main Functions

  • Pruning for fully-convolutional structures, such as one-stage detectors; (copied from the official code)

  • Pruning for networks combining convolutional layers and fully-connected layers, such as faster-RCNN and ResNet;

  • Pruning for networks which involve group convolutions, such as ResNeXt and RegNet.

Usage

Requirements

torch
torchvision
mmcv / mmcv-full
mmcls 
mmdet 

Compatibility

This code is tested with

pytorch=1.3
torchvision=0.4
cudatoolkit=10.0
mmcv-full==1.3.14
mmcls=0.16 
mmdet=2.17

and

pytorch=1.8
torchvision=0.9
cudatoolkit=11.1
mmcv==1.3.16
mmcls=0.16 
mmdet=2.17

Data

Download ImageNet and COCO, then extract them and organize the folders as

- detection
  |- tools
  |- configs
  |- data
  |   |- coco
  |   |   |- train2017
  |   |   |- val2017
  |   |   |- test2017
  |   |   |- annotations
  |
- classification
  |- tools
  |- configs
  |- data
  |   |- imagenet
  |   |   |- train
  |   |   |- val
  |   |   |- test 
  |   |   |- meta
  |
- ...

Commands

e.g. Classification

cd classification
  1. Pruning

    # single GPU
    python tools/train.py configs/xxx_pruning.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_pruning.py --launch pytorch
  2. Fine-tune

    In the config file, modify the deploy_from to the pruned model, and modify the samples_per_gpu to 256/#GPUs. Then

    # single GPU
    python tools/train.py configs/xxx_finetune.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_finetune.py --launch pytorch
  3. Test

    In the config file, add the attribute load_from to the finetuned model. Then

    python tools/test.py configs/xxx_finetune.py --metrics=accuracy

The commands for pruning and finetuning of detection models are similar to that of classification models. Instructions will be added soon.

Acknowledgments

My project acknowledges the official code FisherPruning.

Owner
Peng Lu
Peng Lu
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022