NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

Overview

NeoDTI

NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

Recent Update 09/06/2018

L2 regularization is added.

Requirements

  • Tensorflow (tested on version 1.0.1 and version 1.2.0)
  • tflearn
  • numpy (tested on version 1.13.3 and version 1.14.0)
  • sklearn (tested on version 0.18.1 and version 0.19.0)

Quick start

To reproduce our results:

  1. Unzip data.zip in ./data.
  2. Run NeoDTI_cv.py to reproduce the cross validation results of NeoDTI. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.
    -r: Positive and negative. Two choices: ten and all, the former one sets the positive:negative = 1:10, the latter one considers all unknown DTIs as negative examples. Default: ten.
    -t: Test scenario. The DTI matrix to be tested. Choices are: o, mat_drug_protein.txt will be tested; homo, mat_drug_protein_homo_protein_drug.txt will be tested; drug, mat_drug_protein_drug.txt will be tested; disease, mat_drug_protein_disease.txt will be tested; sideeffect, mat_drug_protein_sideeffect.txt will be tested; unique, mat_drug_protein_drug_unique.txt will be tested. Default: o.
  3. Run NeoDTI_cv_with_aff.py to reproduce the cross validation results of NeoDTI with additional compound-protein binding affinity data. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.

Data description

  • drug.txt: list of drug names.
  • protein.txt: list of protein names.
  • disease.txt: list of disease names.
  • se.txt: list of side effect names.
  • drug_dict_map: a complete ID mapping between drug names and DrugBank ID.
  • protein_dict_map: a complete ID mapping between protein names and UniProt ID.
  • mat_drug_se.txt : Drug-SideEffect association matrix.
  • mat_protein_protein.txt : Protein-Protein interaction matrix.
  • mat_drug_drug.txt : Drug-Drug interaction matrix.
  • mat_protein_disease.txt : Protein-Disease association matrix.
  • mat_drug_disease.txt : Drug-Disease association matrix.
  • mat_protein_drug.txt : Protein-Drug interaction matrix.
  • mat_drug_protein.txt : Drug-Protein interaction matrix.
  • Similarity_Matrix_Drugs.txt : Drug & compound similarity scores based on chemical structures of drugs ([0,708) are drugs, the rest are compounds).
  • Similarity_Matrix_Proteins.txt : Protein similarity scores based on primary sequences of proteins.
  • mat_drug_protein_homo_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with similar drugs (i.e., drug chemical structure similarities > 0.6) or similar proteins (i.e., protein sequence similarities > 40%) were removed (see the paper).
  • mat_drug_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar drug interactions (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_sideeffect.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar side effects (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_disease.txt: Drug-Protein interaction matrix, in which DTIs with drugs or proteins sharing similar diseases (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_unique: Drug-Protein interaction matrix, in which known unique and non-unique DTIs were labelled as 3 and 1, respectively, the corresponding unknown ones were labelled as 2 and 0 (see the paper for the definition of unique).
  • mat_compound_protein_bindingaffinity.txt: Compound-Protein binding affinity matrix (measured by negative logarithm of Ki).

All entities (i.e., drugs, compounds, proteins, diseases and side-effects) are organized in the same order across all files. These files: drug.txt, protein.txt, disease.txt, se.txt, drug_dict_map, protein_dict_map, mat_drug_se.txt, mat_protein_protein.txt, mat_drug_drug.txt, mat_protein_disease.txt, mat_drug_disease.txt, mat_protein_drug.txt, mat_drug_protein.txt, Similarity_Matrix_Proteins.txt, are extracted from https://github.com/luoyunan/DTINet.

Contacts

If you have any questions or comments, please feel free to email Fangping Wan (wfp15[at]tsinghua[dot]org[dot]cn) and/or Jianyang Zeng (zengjy321[at]tsinghua[dot]edu[dot]cn).

Owner
PhD of Computer Science
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022