[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

Overview

MuVER

This repo contains the code and pre-trained model for our EMNLP 2021 paper:
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations. Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Weiming Lu

Quick Start

1. Requirements

The requirements for our code are listed in requirements.txt, install the package with the following command:

pip install -r requirements.txt

For huggingface/transformers, we tested it under version 4.1.X and 4.2.X.

2. Download data and model

3. Use the released model to reproduce our results

  • Without View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score

Expected Result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6208 0.7783 0.8592 0.8983 0.9342 0.9533 0.9633 0.9700
lego 0.4904 0.6714 0.7690 0.8357 0.8791 0.9091 0.9208 0.9249
star_trek 0.4743 0.6130 0.6967 0.7606 0.8159 0.8581 0.8805 0.8919
yugioh 0.3432 0.4861 0.6040 0.7004 0.7596 0.8201 0.8512 0.8672
total 0.4496 0.5970 0.6936 0.7658 0.8187 0.8628 0.8854 0.8969
  • With View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128 
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score
    --view_expansion  
    --merge_layers 4  
    --top_k 0.4

Expected result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6175 0.7867 0.8733 0.9150 0.9375 0.9600 0.9675 0.9708
lego 0.5046 0.6889 0.7882 0.8449 0.8882 0.9183 0.9324 0.9374
star_trek 0.4810 0.6253 0.7121 0.7783 0.8271 0.8706 0.8935 0.9030
yugioh 0.3444 0.5027 0.6322 0.7300 0.7902 0.8429 0.8690 0.8826
total 0.4541 0.6109 0.7136 0.7864 0.8352 0.8777 0.8988 0.9084

Optional Argument:

  • --data_parallel: whether you want to use multiple gpus.
  • --accumulate_score: accumulate score for each entity. Obtain a higher score but will take much time to inference.
  • --view_expansion: whether you want to merge and expand view.
  • --top_k: top_k pairs are expected to merge in each layer.
  • --merge_layers: the number of layers for merging.
  • --test_mode: If you want to generate candidates for train/dev set, change the test_mode to train or dev, which will generate candidates outputs and save it under the directory where you save the test model.

4. How to train your MuVER

We provice the code to train your MuVER. Train the code with the following command:

export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --epoch 30 
    --train_batch_size 128 
    --learning_rate 1e-5 
    --do_train --do_eval 
    --data_parallel 
    --name distributed_multi_view

Important: Since constrastive learning relies heavily on a large batch size, as reported in our paper, we use eight v100(16g) to train our model. The hyperparameters for our best model are in logs/zeshel_hyper_param.txt

The code will create a directory runtime_log to save the log, model and the hyperparameter you used. Everytime you trained your model(with or without grid search), it will create a directory under runtime_log/name_in_your_args/start_time, e.g., runtime_log/distributed_multi_view/2021-09-07-15-12-21, to store all the checkpoints, curve for visualization and the training log.

Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022