Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Overview

Sky Computing

Introduction

Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to devices based on the their hardware sepcification. Sky Computing outperforms the baseline method by 55% in training time when training 160-layer BERT in a 64-node cluster. Our paper can be found at https://arxiv.org/abs/2202.11836

The concept sky computing was first introduced by Dr. Katarzyna Keahey et al. They used this word to describe a cross-cloud compute pattern. And later Prof. Stoica and Prof. Shenker generalized this word to geo-distributed computing. Our project is based on their definition. [1] [2]

Installation

git clone [email protected]:hpcaitech/SkyComputing.git
python -m pip install -r requirements.txt
cd ./scaelum
python -m pip install -v -e .

Experiment (using BERT)

To benchmark the Sky Computing, we prepared a single demo which you can run on your cluster to train BERT.

Prepare BERT model

Bidirectional Encoder Representations from Transformers (aka BERT) is one of the state-of-the-art deep learning models for Natural Language Processing. In the experiment part, we use BERT to run a simple benchmark.

cd $PROJECT
mkdir -p BERT/model && cd BERT/model 
wget https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
unzip wwm_uncased_L-24_H-1024_A-16.zip

Prepare GLUE MNLI dataset

The General Language Understanding Evaluation (aka GLUE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems. And the Multi-Genre Natural Language Inference (aka MNLI) is one of the tasks in GLUE, it is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information.

cd $PROJECT
mkdir -p BERT/data && cd BERT/data
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/1502038877f6a88c225a34450793fbc3ea87eaba/download_glue_data.py
python download_glue_data.py --data_dir ./glue_data --tasks MNLI

Configuration

To run dllb in your cluster, you need to write a config file which contains the necessary information about training, e.g. model layers, useful environment variables. We have provided a well-commentted example, and here are some most important option:

# your project path
PROJECT = os.getenv("PROJECT")

# allocation type, valid values are even, optimal and dynamic
ALLOCATE_TYPE = "even"

# num of node (including the central server)
CORE_NUM = 4

Run scripts

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters. We used slurm script to run our experiment.

#!/bin/sh

#SBATCH --job-name=gpu16   # Job name
#SBATCH -o gpu16.o%j       # Name of stdout output file
#SBATCH -e gpu16.e%j       # Name of stderr error file
#SBATCH -N 16              # Node numbers
#SBATCH -n 16              # GPU numbers
#SBATCH --time=02:00:00    # Run time (hh:mm:ss)

# run
python ./ip_addr.py > "./HOST"
srun python ./launch.py -c "./experiment/config.py"

Citation

@misc{zhu2022sky,
      title={Sky Computing: Accelerating Geo-distributed Computing in Federated Learning}, 
      author={Jie Zhu and Shenggui Li and Yang You},
      year={2022},
      eprint={2202.11836},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reference

@article{keahey2009sky,
  title={Sky computing},
  author={Keahey, Katarzyna and Tsugawa, Mauricio and Matsunaga, Andrea and Fortes, Jose},
  journal={IEEE Internet Computing},
  volume={13},
  number={5},
  pages={43--51},
  year={2009},
  publisher={IEEE}
}
@inproceedings{stoica2021cloud,
  title={From cloud computing to sky computing},
  author={Stoica, Ion and Shenker, Scott},
  booktitle={Proceedings of the Workshop on Hot Topics in Operating Systems},
  pages={26--32},
  year={2021}
}
Owner
HPC-AI Tech
We are a global team to help you train and deploy your AI models
HPC-AI Tech
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022