An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Overview

Semisupervised Multitask Learning

This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch.

This code primarily deals with the tasks of sematic segmentation, instance segmentation, depth prediction learned in a multi-task setting (with a shared encoder) on a synthetic dataset and then adapted to another dataset with a domain shift. Specifically for this implementation the aim is to learn the three tasks on the Cityscapes Dataset, then adapt and evaluate performance in a fully unsupervised or a semi-supervised setting on the IDD Dataset.

The architecture used for the semantic and instance segmentation model is taken from Panoptic Deeplab[2]. While a choice for the depth decoder is offered between BTS[3] and FCRN-Depth[4].

Usage

The following commands can be used to run the codebase, please make sure to see the respective papers for more details.

  1. To train the base encoder on the Cityscapes (or any other dataset with appropriate modifications) use the following command. Additional flags can also be set as required:

    python base_trainer.py --name BaseRun --cityscapes_dir /path/to/cityscapes

  2. Then train the CCR Regularizer as proposed in UM-Adapt with the following command:

    python ccr_trainer.py --base_name BaseRun --cityscapes_dir /path/to/cityscapes --hed_path /path/to/pretrained/HED-Network

  3. Unsupervised adaptation to IDD can now be performed using:

    python idd_adapter.py --name AdaptIDD --base_name BaseRun --cityscapes_dir /path/to/cityscapes --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network

  4. Further optional semi-supervised fine-tuning can be done using:

    python idd_supervised.py --name SupervisedIDD --base_name BaseRun --idd_name AdaptIDD --idd_epoch 10 --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network --supervised_pct 0.5

The code can generally be modified to suit any dataset as required, the base architectures of different decoders as well as the shared encoders can also be altered as needed.

References

If you find this code helpful in your research, please consider citing the following papers.

[1]  @inproceedings{Kundu_2019_ICCV,
        author = {Kundu, Jogendra Nath and Lakkakula, Nishank and Babu, R. Venkatesh},
        title = {UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
        month = {October},
        year = {2019}
    }
[2]  @inproceedings{cheng2020panoptic,
        author={Cheng, Bowen and Collins, Maxwell D and Zhu, Yukun and Liu, Ting and Huang, Thomas S and Adam, Hartwig and Chen, Liang-Chieh},
        title={Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation},
        booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2020}
    }
[3]  @article{lee2019big,
        title={From big to small: Multi-scale local planar guidance for monocular depth estimation},
        author={Lee, Jin Han and Han, Myung-Kyu and Ko, Dong Wook and Suh, Il Hong},
        journal={arXiv preprint arXiv:1907.10326},
        year={2019}
}
[4]  @inproceedings{Xie_ICCV_2015,
         author = {Saining Xie and Zhuowen Tu},
         title = {Holistically-Nested Edge Detection},
         booktitle = {IEEE International Conference on Computer Vision},
         year = {2015}
     }
[5]  @misc{pytorch-hed,
         author = {Simon Niklaus},
         title = {A Reimplementation of {HED} Using {PyTorch}},
         year = {2018},
         howpublished = {\url{https://github.com/sniklaus/pytorch-hed}}
    }

If you use either of Cityscapes or IDD datasets, consider citing them

@inproceedings{Cordts2016Cityscapes,
    title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
    author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
    booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2016}
}
@article{DBLP:journals/corr/abs-1811-10200,,
    title={IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments},
    author = {Varma, Girish and Subramanian, Anbumani and Namboodiri, Anoop and Chandraker, Manmohan and Jawahar, C.V.}
    journal={arXiv preprint arXiv:1811.10200},
    year={2018}

Finally, if you use the Xception backbone, please consider citing

@inproceedings{deeplabv3plus2018,
    title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
    author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
    booktitle={ECCV},
    year={2018}
}

Acknowledgements

Utility functions from many wonderful open-source projects were used, I would like to especially thank the authors of:

Owner
Abhinav Atrishi
Abhinav Atrishi
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022