RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

Related tags

Deep Learningru-dolph
Overview

[Paper] [Хабр] [Model Card] [Colab] [Kaggle]

RuDOLPH 🦌 🎄 ☃️

One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP


Russian Diffusion On Language Picture Hyper-modality (RuDOLPH) is a fast and light text-image-text transformer (350M GPT-3) designed for a quick and easy fine-tuning setup for the solution of various tasks: from generating images by text description and image classification to visual question answering and more. This model demonstrates the power of Hyper-modality Transformers.

(!!!) Hyper-modality means generalized multi-modal, e.g., model that consists of two multi-modal parts: text-2-image and image-2-text becomes text and image hyper-modality model

Sparse Attention Mask

row - col - row - [last] conv

Models

Installing

pip install rudolph==0.0.1rc8

Usage

Fine-Tuning example by @Alex Wortega Open In Colab

Init models

from rudalle import get_tokenizer, get_vae
from rudalle.utils import seed_everything
from rudalle.image_prompts import ImagePrompts

from rudolph.model import get_rudolph_model
from rudolph.pipelines import zs_clf, generate_codebooks, self_reranking_by_image, self_reranking_by_text, show, generate_captions, generate_texts
from rudolph import utils

device = 'cuda'
model = get_rudolph_model('350M', fp16=True, device=device)
model.to(device);
tokenizer = get_tokenizer()
vae = get_vae(dwt=False).to(device)

Setup for Fast Image Generation

text = 'старинный будильник многоугольной формы'
bs, images_num = 48, 48
top_k, top_p = 512, 0.9
with torch.no_grad():
    codebooks = generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs)
    ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
    images = vae.decode(codebooks[ppl_text.argsort()[:9]])
images = torchvision.utils.make_grid(images, nrow=3)
img = torchvision.transforms.functional.to_pil_image(images)
img

Text Generation

generate_texts(
    tokenizer,
    model,
    template='красивый пейзаж ',
    top_k=32, top_p=0.8, texts_num=32, bs=32, seed=42
)[:8]

[{'text': 'красивый пейзаж и деревья в горах с синим небом и облаками в солнечный день. карпаты украина', 'ppl': 155.72},
 {'text': 'красивый пейзаж с горным озером и красивым пейзажем на восходе солнца', 'ppl': 195.81},
 {'text': 'красивый пейзаж с горными вершинами и чистым небом', 'ppl': 219.57},
 {'text': 'красивый пейзаж с горами в тумане, покрывающими горы', 'ppl': 221.36},
 {'text': 'красивый пейзаж и водопад в национальном парке пхутта в таиланде', 'ppl': 248.82},
 {'text': 'красивый пейзаж с голубым небом и белым облаком', 'ppl': 260.76},
 {'text': 'красивый пейзаж с рекой, горы и голубое небо', 'ppl': 273.1},
 {'text': 'красивый пейзаж с зелеными деревьями и голубым небом', 'ppl': 286.22}]

Image Generation + Self Reranking

text = 'красивый пейзаж с озером и лесом на заднем плане'
images_num, bs = 256, 32
seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (2048, 0.975, images_num),
    (1536, 0.975, images_num),
    (1024, 0.975, images_num),
]:
    codebooks.append(generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs))

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=bs)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'зимнее время года'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

text = 'ночное время суток'

ppl_text, ppl_image = self_reranking_by_text(text, codebooks, tokenizer, model, bs=32)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Image Prompt (like Inpainting)

text = 'лодка с алыми парусами'

images_num = 1024
bs = 32

borders = {'up': 6, 'left': 4, 'right': 6, 'down': 2}
image_prompts = ImagePrompts(pil_img, borders, vae, device, crop_first=True)

seed_everything(42)
codebooks = []
for top_k, top_p, images_num in [
    (1024, 0.99, images_num),
]:
    codebooks.append(
        generate_codebooks(text, tokenizer, model, top_k=top_k, images_num=images_num, top_p=top_p, bs=bs, image_prompts=image_prompts)
    )

codebooks = torch.cat(codebooks)

ppl_text, ppl_image = self_reranking_by_text(
    text,
    codebooks,
    tokenizer,
    model,
    bs=bs,
)
with torch.no_grad():
    images = vae.decode(codebooks[ppl_text.argsort()[:16]])

pil_images = utils.torch_tensors_to_pil_list(images)
show(pil_images, 8)

Diffusion (TODO, see Colab)

Image Captioning + Self Reranking

texts = generate_captions(pil_img, tokenizer, model, vae, template='на картинке ', top_k=16, captions_num=128, bs=32, top_p=0.6, temperature=0.8, seed=43, limit_eos=False)
ppl_text, ppl_image = self_reranking_by_image(texts, pil_img, tokenizer, model, vae, bs=32, seed=42)
for idx in ppl_image.argsort()[:8]:
    print(f'-{texts[idx]}')

-на картинке изображено - каяк с плавающей на нем женщиной
-на картинке - лодка с призраками
-на картинке корабль « », вид с воздуха
-на картинке лодка с парусом и 3d эффектом, вид с воздуха
-на картинке лодка с привидениями, вид сверху
-на картинке подводная лодка «акула», вид с воздуха
-на картинке изображено - надувная лодка с жестким дном
-на картинке с сайта esquire, изображен маленький красный корабль

-на картинке собака с длинными ушами, вид спереди
-на картинке собака с большими ушами и с длинными лапами, вид спереди
-на картинке собака с большими ушами и мордой собаки, вид спереди
-на картинке собака с белой гривой, вид спереди собака с коричневым цветом
-на картинке собака с большими ушами и собака с большими ушами, вид спереди
-на картинке собака с большими ушами и коричневым мехом, вид спереди
-на картинке собака с белой гривой, вид спереди собака с белой гривой
-на картинке собака с большими ушами и длинными ушами, вид спереди

-на картинке изображен жилой комплекс «арбат»
-на картинке видно здание с окнами в центре города
-на картинке изображен жилой дом с видом на улицу
-на картинке виднеется здание в центре города
-на картинке изображен вид на жилой комплекс, вид с улицы
-на картинке видна башня банка сбербанка
-на картинке изображен фасад здания с окнами в центре города
-на картинке виднеется здание с балконом

-на картинке мотоцикл иж юпитер вариант с мотором от иж юпитер, вид сзади
-на картинке мотоцикл с мотором и мотором с мотором от мотоцикла, вид сбоку
-на картинке изображен мотоцикл с кузовом из фильма «бэтмен против супермена», вид спереди
-на картинке велосипед с велосипедом в гараже, вид спереди
-на картинке мотоцикл с мотоциклом «мотоцикл» вид сзади, вид спереди
-на картинке велосипед с корзиной для покупок, вид сзади
-на картинке велосипед с мотором от мотоцикла иж юпитер вариант 2 варианта, вид сбоку
-на картинке мотоцикл с мотоциклом « », вид спереди

Zero-Shot Image Classification using PPL

import base64
import requests
from PIL import Image
from io import BytesIO

bs4_urls = requests.get('https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/pipelines/cats_vs_dogs_bs4.json').json()

f, ax = plt.subplots(2,4, figsize=(12,6))

for i, bs4_url in enumerate(bs4_urls):
    pil_img = Image.open(BytesIO(base64.b64decode(bs4_url)))
    
    classes = ['кошка', 'собака']
    preds = zs_clf(
        pil_img, 
        classes,
        model, 
        tokenizer,
        vae,
        template = '{}', 
    )
    ax[i//4, i%4].imshow(pil_img)
    ax[i//4, i%4].set_title(preds['class'])

Linear Probe (TODO, see Colab)

Authors:

Drawing Drawing

Citation

@article{shonenkov2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  eprint        = {...},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CL}
}
@misc{github2022ruDolph,
  title         = {RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP},
  author        = {Alex Shonenkov and Michael Konstantinov},
  year          = {2022},
  howpublished  = {\url{https://github.com/sberbank-ai/ru-dolph}},
}

Supported by

Owner
AI Forever
Creating ML for the future. AI projects you already know. We are non-profit organization with members from all over the world.
AI Forever
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022