LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

Overview

alt text

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and evaluating the performance of the model, with a validation scheme of choice, based on the chosen metric.

LOFO first evaluates the performance of the model with all the input features included, then iteratively removes one feature at a time, retrains the model, and evaluates its performance on a validation set. The mean and standard deviation (across the folds) of the importance of each feature is then reported.

If a model is not passed as an argument to LOFO Importance, it will run LightGBM as a default model.

Install

LOFO Importance can be installed using

pip install lofo-importance

Advantages of LOFO Importance

LOFO has several advantages compared to other importance types:

  • It does not favor granular features
  • It generalises well to unseen test sets
  • It is model agnostic
  • It gives negative importance to features that hurt performance upon inclusion
  • It can group the features. Especially useful for high dimensional features like TFIDF or OHE features.
  • It can automatically group highly correlated features to avoid underestimating their importance.

Example on Kaggle's Microsoft Malware Prediction Competition

In this Kaggle competition, Microsoft provides a malware dataset to predict whether or not a machine will soon be hit with malware. One of the features, Centos_OSVersion is very predictive on the training set, since some OS versions are probably more prone to bugs and failures than others. However, upon splitting the data out of time, we obtain validation sets with OS versions that have not occurred in the training set. Therefore, the model will not have learned the relationship between the target and this seasonal feature. By evaluating this feature's importance using other importance types, Centos_OSVersion seems to have high importance, because its importance was evaluated using only the training set. However, LOFO Importance depends on a validation scheme, so it will not only give this feature low importance, but even negative importance.

import pandas as pd
from sklearn.model_selection import KFold
from lofo import LOFOImportance, Dataset, plot_importance
%matplotlib inline

# import data
train_df = pd.read_csv("../input/train.csv", dtype=dtypes)

# extract a sample of the data
sample_df = train_df.sample(frac=0.01, random_state=0)
sample_df.sort_values("AvSigVersion", inplace=True)

# define the validation scheme
cv = KFold(n_splits=4, shuffle=False, random_state=0)

# define the binary target and the features
dataset = Dataset(df=sample_df, target="HasDetections", features=[col for col in train_df.columns if col != target])

# define the validation scheme and scorer. The default model is LightGBM
lofo_imp = LOFOImportance(dataset, cv=cv, scoring="roc_auc")

# get the mean and standard deviation of the importances in pandas format
importance_df = lofo_imp.get_importance()

# plot the means and standard deviations of the importances
plot_importance(importance_df, figsize=(12, 20))

alt text

Another Example: Kaggle's TReNDS Competition

In this Kaggle competition, pariticipants are asked to predict some cognitive properties of patients. Independent component features (IC) from sMRI and very high dimensional correlation features (FNC) from 3D fMRIs are provided. LOFO can group the fMRI correlation features into one.

def get_lofo_importance(target):
    cv = KFold(n_splits=7, shuffle=True, random_state=17)

    dataset = Dataset(df=df[df[target].notnull()], target=target, features=loading_features,
                      feature_groups={"fnc": df[df[target].notnull()][fnc_features].values
                      })

    model = Ridge(alpha=0.01)
    lofo_imp = LOFOImportance(dataset, cv=cv, scoring="neg_mean_absolute_error", model=model)

    return lofo_imp.get_importance()

plot_importance(get_lofo_importance(target="domain1_var1"), figsize=(8, 8), kind="box")

alt text

Flofo Importance

If running the LOFO Importance package is too time-costly for you, you can use Fast LOFO. Fast LOFO, or FLOFO takes, as inputs, an already trained model and a validation set, and does a pseudo-random permutation on the values of each feature, one by one, then uses the trained model to make predictions on the validation set. The mean of the FLOFO importance is then the difference in the performance of the model on the validation set over several randomised permutations. The difference between FLOFO importance and permutation importance is that the permutations on a feature's values are done within groups, where groups are obtained by grouping the validation set by k=2 features. These k features are chosen at random n=10 times, and the mean and standard deviation of the FLOFO importance are calculated based on these n runs. The reason this grouping makes the measure of importance better is that permuting a feature's value is no longer completely random. In fact, the permutations are done within groups of similar samples, so the permutations are equivalent to noising the samples. This ensures that:

  • The permuted feature values are very unlikely to be replaced by unrealistic values.
  • A feature that is predictable by features among the chosen n*k features will be replaced by very similar values during permutation. Therefore, it will only slightly affect the model performance (and will yield a small FLOFO importance). This solves the correlated feature overestimation problem.
Owner
Ahmet Erdem
Ahmet Erdem
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022