Command-line tool for downloading and extending the RedCaps dataset.

Overview

RedCaps Downloader

This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly download images of officially released annotations as well as download more image-text data from any subreddit over an arbitrary time-span.

Installation

This tool requires Python 3.8 or higher. We recommend using conda for setup. Download Anaconda or Miniconda first. Then follow these steps:

# Clone the repository.
git clone https://github.com/redcaps-dataset/redcaps-downloader
cd redcaps-downloader

# Create a new conda environment.
conda create -n redcaps python=3.8
conda activate redcaps

# Install dependencies along with this code.
pip install -r requirements.txt
python setup.py develop

Basic usage: Download official RedCaps dataset

We expect most users will only require this functionality. Follow these steps to download the official RedCaps annotations and images and arrange all the data in recommended directory structure:

/path/to/redcaps/
├── annotations/
│   ├── abandoned_2017.json
│   ├── abandoned_2017.json
│   ├── ...
│   ├── itookapicture_2019.json
│   ├── itookapicture_2020.json
│   ├── 
   
    _
    
     .json
│   └── ...
│
└── images/
    ├── abandoned/
    │   ├── guli1.jpg
    |   └── ...
    │
    ├── itookapicture/
    │   ├── 1bd79.jpg
    |   └── ...
    │
    ├── 
     
      /
    │   ├── 
      
       .jpg
    │   ├── ...
    └── ...

      
     
    
   
  1. Create an empty directory and symlink it relative to this code directory:

    cd redcaps-downloader
    
    # Edit path here:
    mkdir -p /path/to/redcaps
    ln -s /path/to/redcaps ./datasets/redcaps
  2. Download official RedCaps annotations from Dropbox and unzip them.

    cd datasets/redcaps
    wget https://www.dropbox.com/s/cqtdpsl4hewlli1/redcaps_v1.0_annotations.zip?dl=1
    unzip redcaps_v1.0_annotations.zip
  3. Download images by using redcaps download-imgs command (for a single annotation file).

    for ann_file in ./datasets/redcaps/annotations/*.json; do
        redcaps download-imgs -a $ann_file --save-to path/to/images --resize 512 -j 4
        # Set --resize -1 to turn off resizing shorter edge (saves disk space).
    done

    Parallelize download by changing -j. RedCaps images are sourced from Reddit, Imgur and Flickr, each have their own request limits. This code contains approximate sleep intervals to manage them. Use multiple machines (= different IP addresses) or a cluster to massively parallelize downloading.

That's it, you are all set to use RedCaps!

Advanced usage: Create your own RedCaps-like dataset

Apart from downloading the officially released dataset, this tool supports downloading image-text data from any subreddit – you can reproduce the entire collection pipeline as well as create your own variant of RedCaps! Here, we show how to collect annotations from r/roses (2020) as an example. Follow these steps for any subreddit and years.

Additional one-time setup instructions

RedCaps annotations are extracted from image post metadata, which are served by the Pushshift API and official Reddit API. These APIs are authentication-based, and one must sign up for developer access to obtain API keys (one-time setup):

  1. Copy ./credentials.template.json to ./credentials.json. Its contents are as follows:

    : " }, "imgur": { "client_id": "Your client ID here", "client_secret": "Your client secret here" } } ">
    {
        "reddit": {
            "client_id": "Your client ID here",
            "client_secret": "Your client secret here",
            "username": "Your Reddit username here",
            "password": "Your Reddit password here",
            "user_agent": "
          
           : 
           "
          
        },
        "imgur": {
            "client_id": "Your client ID here",
            "client_secret": "Your client secret here"
        }
    }
  2. Register a new Reddit app here. Reddit will provide a Client ID and Client Secret tokens - fill them in ./credentials.json. For more details, refer to the Reddit OAuth2 wiki. Enter your Reddit account name and password in ./credentials.json. Set User Agent to anything and keep it unchanged (e.g. your name).

  3. Register a new Imgur App by following instructions here. Fill the provided Client ID and Client Secret in ./credentials.json.

  4. Download pre-trained weights of an NSFW detection model.

    wget https://s3.amazonaws.com/nsfwdetector/nsfw.299x299.h5 -P ./datasets/redcaps/models

Data collection from r/roses (2020)

  1. download-anns: Dowload annotations of image posts made in a single month (e.g. January).

    redcaps download-anns --subreddit roses --month 2020-01 -o ./datasets/redcaps/annotations
    
    # Similarly, download annotations for all months of 2020:
    for ((month = 1; month <= 12; month += 1)); do
        redcaps download-anns --subreddit roses --month 2020-$month -o ./datasets/redcaps/annotations
    done
    • NOTE: You may not get all the annotations present in official release as some of them may have disappeared (deleted) over time. After this step, the dataset directory would contain 12 annotation files:
        ./datasets/redcaps/
        └── annotations/
            ├── roses_2020-01.json
            ├── roses_2020-02.json
            ├── ...
            └── roses_2020-12.json
    
  2. merge: Merge all the monthly annotation files into a single file.

    redcaps merge ./datasets/redcaps/annotations/roses_2020-* \
        -o ./datasets/redcaps/annotations/roses_2020.json --delete-old
    • --delete-old will remove individual files after merging. After this step, the merged file will replace individual monthly files:
        ./datasets/redcaps/
        └── annotations/
            └── roses_2020.json
    
  3. download-imgs: Download all images for this annotation file. This step is same as (3) in basic usage.

    redcaps download-imgs --annotations ./datasets/redcaps/annotations/roses_2020.json \
        --resize 512 -j 4 -o ./datasets/redcaps/images --update-annotations
    • --update-annotations removes annotations whose images were not downloaded.
  4. filter-words: Filter all instances whose captions contain potentially harmful language. Any caption containing one of the 400 blocklisted words will be removed. This command modifies the annotation file in-place and deletes the corresponding images from disk.

    redcaps filter-words --annotations ./datasets/redcaps/annotations/roses_2020.json \
        --images ./datasets/redcaps/images
  5. filter-nsfw: Remove all instances having images that are flagged by an off-the-shelf NSFW detector. This command also modifies the annotation file in-place and deletes the corresponding images from disk.

    redcaps filter-nsfw --annotations ./datasets/redcaps/annotations/roses_2020.json \
        --images ./datasets/redcaps/images \
        --model ./datasets/redcaps/models/nsfw.299x299.h5
  6. filter-faces: Remove all instances having images with faces detected by an off-the-shelf face detector. This command also modifies the annotation file in-place and deletes the corresponding images from disk.

    redcaps filter-faces --annotations ./datasets/redcaps/annotations/roses_2020.json \
        --images ./datasets/redcaps/images  # Model weights auto-downloaded
  7. validate: All the above steps create a single annotation file (and downloads images) similar to official RedCaps annotations. To double-check this, run the following command and expect no errors to be printed.

    redcaps validate --annotations ./datasets/redcaps/annotations/roses_2020.json

Citation

If you find this code useful, please consider citing:

@inproceedings{desai2021redcaps,
    title={{RedCaps: Web-curated image-text data created by the people, for the people}},
    author={Karan Desai and Gaurav Kaul and Zubin Aysola and Justin Johnson},
    booktitle={NeurIPS Datasets and Benchmarks},
    year={2021}
}
Owner
RedCaps dataset
RedCaps dataset
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022