Capsule endoscopy detection DACON challenge

Overview

capsule_endoscopy_detection (DACON Challenge)

Overview

  • Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블)
    • 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolor, mmdetection 및 swin transformer github로부터 받아서 사용
    • 각 방식에 필요한 형태로 데이터의 format 변경
  • Train set과 Validation set을 나누어 진행
  • 총 11개의 결과를 앙상블
    • detectors_casacde_rcnn_resnet50_multiscale, retinanet_swin-l, retinanet_swin-l_multiscale, retinanet_swin-t, atss_swin-l_multiscale, faster_rcnn-swin-l_multiscale, yolor_tta_multiscale, yolov5x, yolov5x_tta, yolov5x_tta_multiscale
    • Weighted boxes fusion (WBF) 방식으로 앙상블 진행 (Iou threshold = 0.4)
    • 모델에 관한 보다 자세한 내용은 /all_steps 폴더 내에 STEP2로 시작하는 .sh 스크립트들에 적힌 주석을 참고해주세요!

환경(env) 세팅

  • 실험 환경: Ubuntu 18.04, Cuda 11.3, Anaconda3, Python 3.8
  1. git clone ( + 폴더 권한 설정)
git clone https://github.com/MAILAB-Yonsei/capsule_endoscopy_detection.git
chmod -R 777 capsule_endoscopy_detection
cd capsule_endoscopy_detection
  1. cbnet만 제외한 나머지에 대한 env 생성 (all_except_cbnet)
conda create -n all_except_cbnet python=3.8
conda activate all_except_cbnet
pytorch 설치 (ex. conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch)
pip install openmim
mim install mmdet
pip install -r requirements_all_except_cbnet.txt
conda deactivate
  1. cbnet에 대한 env 생성 (cbnet)
conda create -n cbnet python=3.8
conda activate cbnet
pytorch 설치 (ex. conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch)
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
     (ex. pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html)
cd UniverseNet
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
pip install instaboostfast
pip install git+https://github.com/cocodataset/panopticapi.git
pip install git+https://github.com/lvis-dataset/lvis-api.git
pip install albumentations>=0.3.2 --no-binary imgaug,albumentations
pip install pandas
pip install tqdm
pip install shapely
conda deactivate
cd ..

main code 실행

[각 STEP 별로 자세한 설명은 /all_steps 폴더 내의 각각의 .sh 파일에 적힌 주석을 참고해주세요!]

STEP0. data root path 지정

cd all_steps
gedit data_path.txt

data_path.txt 파일에 data의 절대 경로를 명시한다!!! (ex. /mnt/data)

STEP1. data preparation (약 20~30분 소요)

conda activate all_except_cbnet
bash STEP1_data_preparation.sh

STEP2. 각 모델을 학습시킨다. (pretrained 모델로 inference만 하고자 한다면 바로 STEP3로!)

  • cbnet만 제외한 나머지에 대한 Training
conda activate all_except_cbnet
bash STEP2_train_model1_atss_swin-l_ms.sh
bash STEP2_train_model2_detectors_cascade_rcnn_r50_ms.sh
bash STEP2_train_model3_faster_rcnn_swin-l_ms.sh
bash STEP2_train_model4_retinanet_swin-l.sh
bash STEP2_train_model5_retinanet_swin-l_ms.sh
bash STEP2_train_model6_retinanet_swin-t_ms.sh
bash STEP2_train_model7_yolor.sh
bash STEP2_train_model8_yolo5x.sh
  • cbnet에 대한 Training
conda activate cbnet
bash STEP2_train_model9_cbnet_faster_rcnn_swin-l_ms.sh

STEP3. 모든 모델에 대해 Inference를 진행한다. (모델 하나당 20~30분 소요)

  • STEP2.를 건너뛰고 pretrained 모델에 대해 test를 하는 경우 아래 과정을 수행한 뒤 STEP3.의 명령어를 실행:
    • 아래의 weight 파일 링크에서 받은 mmdetection/ckpts 폴더를 /mmdetection 폴더 아래에 위치시킨다.
    • 아래의 weight 파일 링크에서 받은 UniverseNet/ckpts 폴더를 /UniverseNet 폴더 아래에 위치시킨다.
    • 아래의 weight 파일 링크에서 받은 YOLO/ckpts 폴더를 /YOLO 폴더 아래에 위치시킨다.
    • weight 파일 링크: https://drive.google.com/drive/folders/151KJC3FTUsK5mfx4TtNbhiFuuvLIeGz-?usp=sharing
  • cbnet만 제외한 나머지에 대한 Inference
conda activate all_except_cbnet
bash STEP3_inference_all_except_cbnet.sh
  • cbnet에 대한 Inference
conda activate cbnet
bash STEP3_inference_cbnet.sh

SETP4. 모든 모델에 대해 앙상블을 진행한다.

conda activate all_except_cbnet
bash STEP4_ensemble.sh
  • 최종 파일은 가장 상위 디렉토리에 'final.csv'로 생성!!!

주의사항

모두 순서에 맞게 코드를 구성해놓았기 때문에 하나의 코드를 2번 실행하는 등의 경우 진행에 어려움이 있을 수 있습니다. 참고해주세요.

현재 코드는 validation은 진행하지 않게 주석처리했습니다. 원하시면 predict.py에서 validation 주석처리를 풀고 val_answer.csv 파일의 경로를 설정해주시면 됩니다.

(predict.py 파일 위치: /mmdetection/predict/main.py, /UniverseNet/predict/main.py)

Owner
MAILAB
Medical Artificial Intelligence Laboratory at Yonsei University, Republic of Korea
MAILAB
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Özlem Taşkın 0 Feb 23, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022