验证码识别 深度学习 tensorflow 神经网络

Overview

captcha_tf2

验证码识别 深度学习 tensorflow 神经网络
使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上

目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。

实例demo

训练过程

  • 优化器选择: Adam
  • 损失函数: MSLE(均方对数误差)
  • 数据集: 随机生成的10000张图片,按照8:2用于训练和验证
  • 设备: Titan X 在训练过程中第5次epoch即可达到 80的accuracy50以上的val_accuracy
    经过30次epoch accuracy达到93, val_acc在85以上
    最高达到97 acc

目前训练val提升可以,loss下降稳定


demo图片
效果

效果
效果

目录

1. 项目结构

1.1 文件目录

序号 文件 说明
1 model/ 模型权重文件
2 network/ 神经网络
3 settings_tf 项目配置文件
4 tools/ 工具文件
5 data/ 数据文件

1.2 主要文件

序号 文件 说明
1 train.py 训练程序
2 detect.py 测试程序
3 make_data.py 训练集合成程序
4 create_image.py 数据集生产脚本

2. 使用

修改主路径下derect.py的配置变量注:注意config.py的图片size
直接调用python detcet.py
保存格式:*.txt: [6, 9, 5, 6] 1.jpg

3. 训练

3.1 数据准备:

  • 如果自己收集数据较为繁琐,可直接调用create_image.py,修改相应配置即可快速生成图片集和标注文件 无需其他步骤
  • 或是自己去网络上寻找验证码图片集, 保存格式需以数字顺序保存,且标注文件存放在某个单独的 txt中,标注结果是对应的图片名数字-1作为下标 默认采用数据集样式为1.jpg, 2.jpg ...的顺序格式
| ̄ ̄data/
|   |
|   | ̄ ̄images/
|   |   |
|   |   | ̄ ̄1.jpg
|   |   |
|   |   | ̄ ̄2.jpg
|   |    
|   | ̄ ̄label.txt

3.2开始训练

首先修改congig.py配置文件
接着修改train.py

  • 开始训练 python train.py
    训练中

网络

序号
输入 (B, 60, 160, 1)
1 卷积(32) relu BN
2 卷积(64) relu BN 相等池化
3 卷积(128) relu BN 相等池化
4 卷积(64) relu BN 相等池化
5 卷积(32) relu BN 相等池化
6 扁平化
8 全链接(onehot) softmax
输出 (长度, 类别)
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022