验证码识别 深度学习 tensorflow 神经网络

Overview

captcha_tf2

验证码识别 深度学习 tensorflow 神经网络
使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上

目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。

实例demo

训练过程

  • 优化器选择: Adam
  • 损失函数: MSLE(均方对数误差)
  • 数据集: 随机生成的10000张图片,按照8:2用于训练和验证
  • 设备: Titan X 在训练过程中第5次epoch即可达到 80的accuracy50以上的val_accuracy
    经过30次epoch accuracy达到93, val_acc在85以上
    最高达到97 acc

目前训练val提升可以,loss下降稳定


demo图片
效果

效果
效果

目录

1. 项目结构

1.1 文件目录

序号 文件 说明
1 model/ 模型权重文件
2 network/ 神经网络
3 settings_tf 项目配置文件
4 tools/ 工具文件
5 data/ 数据文件

1.2 主要文件

序号 文件 说明
1 train.py 训练程序
2 detect.py 测试程序
3 make_data.py 训练集合成程序
4 create_image.py 数据集生产脚本

2. 使用

修改主路径下derect.py的配置变量注:注意config.py的图片size
直接调用python detcet.py
保存格式:*.txt: [6, 9, 5, 6] 1.jpg

3. 训练

3.1 数据准备:

  • 如果自己收集数据较为繁琐,可直接调用create_image.py,修改相应配置即可快速生成图片集和标注文件 无需其他步骤
  • 或是自己去网络上寻找验证码图片集, 保存格式需以数字顺序保存,且标注文件存放在某个单独的 txt中,标注结果是对应的图片名数字-1作为下标 默认采用数据集样式为1.jpg, 2.jpg ...的顺序格式
| ̄ ̄data/
|   |
|   | ̄ ̄images/
|   |   |
|   |   | ̄ ̄1.jpg
|   |   |
|   |   | ̄ ̄2.jpg
|   |    
|   | ̄ ̄label.txt

3.2开始训练

首先修改congig.py配置文件
接着修改train.py

  • 开始训练 python train.py
    训练中

网络

序号
输入 (B, 60, 160, 1)
1 卷积(32) relu BN
2 卷积(64) relu BN 相等池化
3 卷积(128) relu BN 相等池化
4 卷积(64) relu BN 相等池化
5 卷积(32) relu BN 相等池化
6 扁平化
8 全链接(onehot) softmax
输出 (长度, 类别)
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022