验证码识别 深度学习 tensorflow 神经网络

Overview

captcha_tf2

验证码识别 深度学习 tensorflow 神经网络
使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上

目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。

实例demo

训练过程

  • 优化器选择: Adam
  • 损失函数: MSLE(均方对数误差)
  • 数据集: 随机生成的10000张图片,按照8:2用于训练和验证
  • 设备: Titan X 在训练过程中第5次epoch即可达到 80的accuracy50以上的val_accuracy
    经过30次epoch accuracy达到93, val_acc在85以上
    最高达到97 acc

目前训练val提升可以,loss下降稳定


demo图片
效果

效果
效果

目录

1. 项目结构

1.1 文件目录

序号 文件 说明
1 model/ 模型权重文件
2 network/ 神经网络
3 settings_tf 项目配置文件
4 tools/ 工具文件
5 data/ 数据文件

1.2 主要文件

序号 文件 说明
1 train.py 训练程序
2 detect.py 测试程序
3 make_data.py 训练集合成程序
4 create_image.py 数据集生产脚本

2. 使用

修改主路径下derect.py的配置变量注:注意config.py的图片size
直接调用python detcet.py
保存格式:*.txt: [6, 9, 5, 6] 1.jpg

3. 训练

3.1 数据准备:

  • 如果自己收集数据较为繁琐,可直接调用create_image.py,修改相应配置即可快速生成图片集和标注文件 无需其他步骤
  • 或是自己去网络上寻找验证码图片集, 保存格式需以数字顺序保存,且标注文件存放在某个单独的 txt中,标注结果是对应的图片名数字-1作为下标 默认采用数据集样式为1.jpg, 2.jpg ...的顺序格式
| ̄ ̄data/
|   |
|   | ̄ ̄images/
|   |   |
|   |   | ̄ ̄1.jpg
|   |   |
|   |   | ̄ ̄2.jpg
|   |    
|   | ̄ ̄label.txt

3.2开始训练

首先修改congig.py配置文件
接着修改train.py

  • 开始训练 python train.py
    训练中

网络

序号
输入 (B, 60, 160, 1)
1 卷积(32) relu BN
2 卷积(64) relu BN 相等池化
3 卷积(128) relu BN 相等池化
4 卷积(64) relu BN 相等池化
5 卷积(32) relu BN 相等池化
6 扁平化
8 全链接(onehot) softmax
输出 (长度, 类别)
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022