Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Overview

Video Autoencoder: self-supervised disentanglement of 3D structure and motion

This repository contains the code (in PyTorch) for the model introduced in the following paper:

Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Zihang Lai, Sifei Liu, Alexi A. Efros, Xiaolong Wang
ICCV, 2021
[Paper] [Project Page] [12-min oral pres. video] [3-min supplemental video]

Figure

Citation

@inproceedings{Lai21a,
        title={Video Autoencoder: self-supervised disentanglement of 3D structure and motion},
        author={Lai, Zihang and Liu, Sifei and Efros, Alexei A and Wang, Xiaolong},
        booktitle={ICCV},
        year={2021}
}

Contents

  1. Introduction
  2. Data preparation
  3. Training
  4. Evaluation
  5. Pretrained model

Introduction

Figure We present Video Autoencoder for learning disentangled representations of 3D structure and camera pose from videos in a self-supervised manner. Relying on temporal continuity in videos, our work assumes that the 3D scene structure in nearby video frames remains static. Given a sequence of video frames as input, the Video Autoencoder extracts a disentangled representation of the scene including: (i) a temporally-consistent deep voxel feature to represent the 3D structure and (ii) a 3D trajectory of camera poses for each frame. These two representations will then be re-entangled for rendering the input video frames. Video Autoencoder can be trained directly using a pixel reconstruction loss, without any ground truth 3D or camera pose annotations. The disentangled representation can be applied to a range of tasks, including novel view synthesis, camera pose estimation, and video generation by motion following. We evaluate our method on several large-scale natural video datasets, and show generalization results on out-of-domain images.

Dependencies

The following dependencies are not strict - they are the versions that we use.

Data preparation

RealEstate10K:

  1. Download the dataset from RealEstate10K.
  2. Download videos from RealEstate10K dataset, decode videos into frames. You might find the RealEstate10K_Downloader written by cashiwamochi helpful. Organize the data files into the following structure:
RealEstate10K/
    train/
        0000cc6d8b108390.txt
        00028da87cc5a4c4.txt
        ...
    test/
        000c3ab189999a83.txt
        000db54a47bd43fe.txt
        ...
dataset/
    train/
        0000cc6d8b108390/
            52553000.jpg
            52586000.jpg
            ...
        00028da87cc5a4c4/
            ...
    test/
        000c3ab189999a83/
        ...
  1. Subsample the training set at one-third of the original frame-rate (so that the motion is sufficiently large). You can use scripts/subsample_dataset.py.
  2. A list of videos ids that we used (10K for training and 5K for testing) is provided here:
    1. Training video ids and testing video ids.
    2. Note: as time changes, the availability of videos could change.

Matterport 3D (this could be tricky):

  1. Install habitat-api and habitat-sim. You need to use the following repo version (see this SynSin issue for details):

    1. habitat-sim: d383c2011bf1baab2ce7b3cd40aea573ad2ddf71
    2. habitat-api: e94e6f3953fcfba4c29ee30f65baa52d6cea716e
  2. Download the models from the Matterport3D dataset and the point nav datasets. You should have a dataset folder with the following data structure:

    root_folder/
         mp3d/
             17DRP5sb8fy/
                 17DRP5sb8fy.glb  
                 17DRP5sb8fy.house  
                 17DRP5sb8fy.navmesh  
                 17DRP5sb8fy_semantic.ply
             1LXtFkjw3qL/
                 ...
             1pXnuDYAj8r/
                 ...
             ...
         pointnav/
             mp3d/
                 ...
    
  3. Walk-through videos for pretraining: We use a ShortestPathFollower function provided by the Habitat navigation package to generate episodes of tours of the rooms. See scripts/generate_matterport3d_videos.py for details.

  4. Training and testing view synthesis pairs: we generally follow the same steps as the SynSin data instruction. The main difference is that we precompute all the image pairs. See scripts/generate_matterport3d_train_image_pairs.py and scripts/generate_matterport3d_test_image_pairs.py for details.

###Replica:

  1. Testing view synthesis pairs: This procedure is similar to step 4 in Matterport3D - with only the specific dataset changed. See scripts/generate_replica_test_image_pairs.py for details.

Configurations

Finally, change the data paths in configs/dataset.yaml to your data location.

Pre-trained models

  • Pre-trained model (RealEstate10K): Link
  • Pre-trained model (Matterport3D): Link

Training:

Use this script:

CUDA_VISIBLE_DEVICES=0,1 python train.py --savepath log/train --dataset RealEstate10K

Some optional commands (w/ default value in square bracket):

  • Select dataset: --dataset [RealEstate10K]
  • Interval between clip frames: --interval [1]
  • Change clip length: --clip_length [6]
  • Increase/decrease lr step: --lr_adj [1.0]
  • For Matterport3D finetuning, you need to set --clip_length 2, because the data are pairs of images.

Evaluation:

1. Generate test results:

Use this script (for testing RealEstate10K):

CUDA_VISIBLE_DEVICES=0 python test_re10k.py --savepath log/model --resume log/model/checkpoint.tar --dataset RealEstate10K

or this script (for testing Matterport3D/Replica):

CUDA_VISIBLE_DEVICES=0 python test_mp3d.py --savepath log/model --resume log/model/checkpoint.tar --dataset Matterport3D

Some optional commands:

  • Select dataset: --dataset [RealEstate10K]
  • Max number of frames: --frame_limit [30]
  • Max number of sequences: --video_limit [100]
  • Use training set to evaluate: --train_set

Running this will generate a output folder where the results (videos and poses) save. If you want to visualize the pose, use packages for evaluation of odometry, such as evo. If you want to quantitatively evaluate the results, see 2.1, 2.2.

2.1 Quantitative Evaluation of synthesis results:

Use this script:

python eval_syn_re10k.py [OUTPUT_DIR] (for RealEstate10K)
python eval_syn_mp3d.py [OUTPUT_DIR] (for Matterport3D)

Optional commands:

  • Evaluate LPIPS: --lpips

2.2 Quantitative Evaluation of pose prediction results:

Use this script:

python eval_pose.py [POSE_DIR]

Contact

For any questions about the code or the paper, you can contact zihang.lai at gmail.com.

Owner
Working from home
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022