"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

Overview

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022)

winner arXiv zhihu mst visitors

Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Zhang, Hanspeter Pfister, Radu Timofte, Luc Van Gool

The first two authors contribute equally to this work

News

  • 2022.04.17 : Our paper has been accepted by CVPRW 2022, code and models have been released. 🚀
  • 2022.04.02 : We win the First place of NTIRE 2022 Challenge on Spectral Reconstruction from RGB. 🏆
480 nm 520 nm 580 nm 660 nm

Abstract: Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI). These CNN-based methods achieve impressive restoration performance while showing limitations in capturing the long-range dependencies and self-similarity prior. To cope with this problem, we propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is based on the HSI spatially sparse while spectrally self-similar nature to compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to extract multi-resolution contextual information. Finally, our MST++, cascaded by several SSTs, progressively improves the reconstruction quality from coarse to fine. Comprehensive experiments show that our MST++ significantly outperforms other state-of-the-art methods. In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place.


Network Architecture

Illustration of MST

Our MST++ is mainly based on our work MST, which is accepted by CVPR 2022.

Comparison with State-of-the-art Methods

This repo is a baseline and toolbox containing 11 image restoration algorithms for Spectral Reconstruction.

We are going to enlarge our model zoo in the future.

Supported algorithms:

comparison_fig

Results on NTIRE 2022 HSI Dataset - Validation

Method Params (M) FLOPS (G) MRAE RMSE PSNR Model Zoo
HSCNN+ 4.65 304.45 0.3814 0.0588 26.36 Google Drive / Baidu Disk
HRNet 31.70 163.81 0.3476 0.0550 26.89 Google Drive / Baidu Disk
EDSR 2.42 158.32 0.3277 0.0437 28.29 Google Drive / Baidu Disk
AWAN 4.04 270.61 0.2500 0.0367 31.22 Google Drive / Baidu Disk
HDNet 2.66 173.81 0.2048 0.0317 32.13 Google Drive / Baidu Disk
HINet 5.21 31.04 0.2032 0.0303 32.51 Google Drive / Baidu Disk
MIRNet 3.75 42.95 0.1890 0.0274 33.29 Google Drive / Baidu Disk
Restormer 15.11 93.77 0.1833 0.0274 33.40 Google Drive / Baidu Disk
MPRNet 3.62 101.59 0.1817 0.0270 33.50 Google Drive / Baidu Disk
MST-L 2.45 32.07 0.1772 0.0256 33.90 Google Drive / Baidu Disk
MST++ 1.62 23.05 0.1645 0.0248 34.32 Google Drive / Baidu Disk

Our MST++ siginificantly outperforms other methods while requiring cheaper Params and FLOPS.

Note: access code for Baidu Disk is mst1.

1. Create Envirement:

  • Python 3 (Recommend to use Anaconda)

  • NVIDIA GPU + CUDA

  • Python packages:

    cd MST-plus-plus
    pip install -r requirements.txt

2. Data Preparation:

  • Download training spectral images (Google Drive / Baidu Disk, code: mst1), training RGB images (Google Drive / Baidu Disk), validation spectral images (Google Drive / Baidu Disk), validation RGB images (Google Drive / Baidu Disk), and testing RGB images (Google Drive / Baidu Disk) from the competition website of NTIRE 2022 Spectral Reconstruction Challenge.

  • Place the training spectral images and validation spectral images to /MST-plus-plus/dataset/Train_Spec/.

  • Place the training RGB images and validation RGB images to /MST-plus-plus/dataset/Train_RGB/.

  • Place the testing RGB images to /MST-plus-plus/dataset/Test_RGB/.

  • Then this repo is collected as the following form:

    |--MST-plus-plus
        |--test_challenge_code
        |--test_develop_code
        |--train_code  
        |--dataset 
            |--Train_Spec
                |--ARAD_1K_0001.mat
                |--ARAD_1K_0002.mat
                : 
                |--ARAD_1K_0950.mat
      	|--Train_RGB
                |--ARAD_1K_0001.jpg
                |--ARAD_1K_0002.jpg
                : 
                |--ARAD_1K_0950.jpg
            |--Test_RGB
                |--ARAD_1K_0951.jpg
                |--ARAD_1K_0952.jpg
                : 
                |--ARAD_1K_1000.jpg
            |--split_txt
                |--train_list.txt
                |--valid_list.txt

3. Evaluation on the Validation Set:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/test_develop_code/model_zoo/.

(2) Run the following command to test the model on the validation RGB images.

cd /MST-plus-plus/test_develop_code/

# test MST++
python test.py --data_root ../dataset/  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# test MST-L
python test.py --data_root ../dataset/  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# test MIRNet
python test.py --data_root ../dataset/  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# test HINet
python test.py --data_root ../dataset/  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# test MPRNet
python test.py --data_root ../dataset/  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# test Restormer
python test.py --data_root ../dataset/  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# test EDSR
python test.py --data_root ../dataset/  --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# test HDNet
python test.py --data_root ../dataset/  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# test HRNet
python test.py --data_root ../dataset/  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# test HSCNN+
python test.py --data_root ../dataset/  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

# test AWAN
python test.py --data_root ../dataset/  --method awan --pretrained_model_path ./model_zoo/awan.pth --outf ./exp/awan/  --gpu_id 0

The results will be saved in /MST-plus-plus/test_develop_code/exp/ in the mat format and the evaluation metric (including MRAE,RMSE,PSNR) will be printed.

4. Evaluation on the Test Set:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/test_challenge_code/model_zoo/.

(2) Run the following command to test the model on the testing RGB images.

cd /MST-plus-plus/test_challenge_code/

# test MST++
python test.py --data_root ../dataset/  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# test MST-L
python test.py --data_root ../dataset/  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# test MIRNet
python test.py --data_root ../dataset/  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# test HINet
python test.py --data_root ../dataset/  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# test MPRNet
python test.py --data_root ../dataset/  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# test Restormer
python test.py --data_root ../dataset/  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# test EDSR
python test.py --data_root ../dataset/  --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# test HDNet
python test.py --data_root ../dataset/  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# test HRNet
python test.py --data_root ../dataset/  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# test HSCNN+
python test.py --data_root ../dataset/  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

The results and submission.zip will be saved in /MST-plus-plus/test_challenge_code/exp/.

5. Training

To train a model, run

cd /MST-plus-plus/train_code/

# train MST++
python train.py --method mst_plus_plus  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mst_plus_plus/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MST-L
python train.py --method mst  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mst/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MIRNet
python train.py --method mirnet  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/mirnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HINet
python train.py --method hinet  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/hinet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train MPRNet
python train.py --method mprnet  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/mprnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train Restormer
python train.py --method restormer  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/restormer/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train EDSR
python train.py --method edsr  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/edsr/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HDNet
python train.py --method hdnet  --batch_size 20 --end_epoch 300 --init_lr 4e-4 --outf ./exp/hdnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HRNet
python train.py --method hrnet  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/hrnet/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train HSCNN+
python train.py --method hscnn_plus  --batch_size 20 --end_epoch 300 --init_lr 2e-4 --outf ./exp/hscnn_plus/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

# train AWAN
python train.py --method awan  --batch_size 20 --end_epoch 300 --init_lr 1e-4 --outf ./exp/awan/ --data_root ../dataset/  --patch_size 128 --stride 8  --gpu_id 0

The training log and models will be saved in /MST-plus-plus/train_code/exp/.

6. Prediction:

(1) Download the pretrained model zoo from (Google Drive / Baidu Disk, code: mst1) and place them to /MST-plus-plus/predict_code/model_zoo/.

(2) Run the following command to reconstruct your own RGB image.

cd /MST-plus-plus/predict_code/

# reconstruct by MST++
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mst_plus_plus --pretrained_model_path ./model_zoo/mst_plus_plus.pth --outf ./exp/mst_plus_plus/  --gpu_id 0

# reconstruct by MST-L
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mst --pretrained_model_path ./model_zoo/mst.pth --outf ./exp/mst/  --gpu_id 0

# reconstruct by MIRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mirnet --pretrained_model_path ./model_zoo/mirnet.pth --outf ./exp/mirnet/  --gpu_id 0

# reconstruct by HINet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hinet --pretrained_model_path ./model_zoo/hinet.pth --outf ./exp/hinet/  --gpu_id 0

# reconstruct by MPRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method mprnet --pretrained_model_path ./model_zoo/mprnet.pth --outf ./exp/mprnet/  --gpu_id 0

# reconstruct by Restormer
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method restormer --pretrained_model_path ./model_zoo/restormer.pth --outf ./exp/restormer/  --gpu_id 0

# reconstruct by EDSR
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg --method edsr --pretrained_model_path ./model_zoo/edsr.pth --outf ./exp/edsr/  --gpu_id 0

# reconstruct by HDNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hdnet --pretrained_model_path ./model_zoo/hdnet.pth --outf ./exp/hdnet/  --gpu_id 0

# reconstruct by HRNet
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hrnet --pretrained_model_path ./model_zoo/hrnet.pth --outf ./exp/hrnet/  --gpu_id 0

# reconstruct by HSCNN+
python test.py --rgb_path ./demo/ARAD_1K_0912.jpg  --method hscnn_plus --pretrained_model_path ./model_zoo/hscnn_plus.pth --outf ./exp/hscnn_plus/  --gpu_id 0

You can replace './demo/ARAD_1K_0912.jpg' with your RGB image path. The reconstructed results will be saved in /MST-plus-plus/predict_code/exp/.

Citation

If this repo helps you, please consider citing our works:

@inproceedings{mst,
	title={Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction},
	author={Yuanhao Cai and Jing Lin and Xiaowan Hu and Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

@inproceedings{mst_pp,
  title={MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction},
  author={Yuanhao Cai and Jing Lin and Zudi Lin and Haoqian Wang and Yulun Zhang and Hanspeter Pfister and Radu Timofte and Luc Van Gool},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  year={2022}
}

@inproceedings{hdnet,
	title={HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging},
	author={Xiaowan Hu and Yuanhao Cai and Jing Lin and  Haoqian Wang and Xin Yuan and Yulun Zhang and Radu Timofte and Luc Van Gool},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}
Owner
Yuanhao Cai
Tsinghua University [email protected]
Yuanhao Cai
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023