Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

Related tags

Deep Learningtf-imle
Overview

tf-imle

Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021 paper Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions.

I-MLE is also available as a PyTorch library: https://github.com/uclnlp/torch-imle

Introduction

Implicit MLE (I-MLE) makes it possible to include discrete combinatorial optimization algorithms, such as Dijkstra's algorithm or integer linear programming (ILP) solvers, as well as complex discrete probability distributions in standard deep learning architectures. The figure below illustrates the setting I-MLE was developed for. is a standard neural network, mapping some input to the input parameters of a discrete combinatorial optimization algorithm or a discrete probability distribution, depicted as the black box. In the forward pass, the discrete component is executed and its discrete output fed into a downstream neural network . Now, with I-MLE it is possible to estimate gradients of with respect to a loss function, which are used during backpropagation to update the parameters of the upstream neural network.

Illustration of the problem addressed by I-MLE

The core idea of I-MLE is that it defines an implicit maximum likelihood objective whose gradients are used to update upstream parameters of the model. Every instance of I-MLE requires two ingredients:

  1. A method to approximately sample from a complex and possibly intractable distribution. For this we use Perturb-and-MAP (aka the Gumbel-max trick) and propose a novel family of noise perturbations tailored to the problem at hand.
  2. A method to compute a surrogate empirical distribution: Vanilla MLE reduces the KL divergence between the current distribution and the empirical distribution. Since in our setting, we do not have access to such an empirical distribution, we have to design surrogate empirical distributions which we term target distributions. Here we propose two families of target distributions which are widely applicable and work well in practice.

Requirements:

TensorFlow 2 implementation:

  • tensorflow==2.3.0 or tensorflow-gpu==2.3.0
  • numpy==1.18.5
  • matplotlib==3.1.1
  • scikit-learn==0.24.1
  • tensorflow-probability==0.7.0

PyTorch implementation:

Example: I-MLE as a Layer

The following is an instance of I-MLE implemented as a layer. This is a class where the optimization problem is computing the k-subset configuration, the target distribution is based on perturbation-based implicit differentiation, and the perturb-and-MAP noise perturbations are drawn from the sum-of-gamma distribution.

class IMLESubsetkLayer(tf.keras.layers.Layer):
    
    def __init__(self, k, _tau=10.0, _lambda=10.0):
        super(IMLESubsetkLayer, self).__init__()
        # average number of 1s in a solution to the optimization problem
        self.k = k
        # the temperature at which we want to sample
        self._tau = _tau
        # the perturbation strength (here we use a target distribution based on perturbation-based implicit differentiation
        self._lambda = _lambda  
        # the samples we store for the backward pass
        self.samples = None 
        
    @tf.function
    def sample_sum_of_gamma(self, shape):
        
        s = tf.map_fn(fn=lambda t: tf.random.gamma(shape, 1.0/self.k, self.k/t), 
                  elems=tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]))   
        # now add the samples
        s = tf.reduce_sum(s, 0)
        # the log(m) term
        s = s - tf.math.log(10.0)
        # divide by k --> each s[c] has k samples whose sum is distributed as Gumbel(0, 1)
        s = self._tau * (s / self.k)

        return s
    
    @tf.function
    def sample_discrete_forward(self, logits): 
        self.samples = self.sample_sum_of_gamma(tf.shape(logits))
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        
        return y
    
    @tf.function
    def sample_discrete_backward(self, logits):     
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        return y
    
    @tf.custom_gradient
    def subset_k(self, logits, k):

        # sample discretely with perturb and map
        z_train = self.sample_discrete_forward(logits)
        # compute the top-k discrete values
        threshold = tf.expand_dims(tf.nn.top_k(logits, self.k, sorted=True)[0][:,-1], -1)
        z_test = tf.cast(tf.greater_equal(logits, threshold), tf.float32)
        # at training time we sample, at test time we take the argmax
        z_output = K.in_train_phase(z_train, z_test)
        
        def custom_grad(dy):

            # we perturb (implicit diff) and then resuse sample for perturb and MAP
            map_dy = self.sample_discrete_backward(logits - (self._lambda*dy))
            # we now compute the gradients as the difference (I-MLE gradients)
            grad = tf.math.subtract(z_train, map_dy)
            # return the gradient            
            return grad, k

        return z_output, custom_grad

Reference

@inproceedings{niepert21imle,
  author    = {Mathias Niepert and
               Pasquale Minervini and
               Luca Franceschi},
  title     = {Implicit {MLE:} Backpropagating Through Discrete Exponential Family
               Distributions},
  booktitle = {NeurIPS},
  series    = {Proceedings of Machine Learning Research},
  publisher = {{PMLR}},
  year      = {2021}
}
Owner
NEC Laboratories Europe
Research software developed at NEC Laboratories Europe
NEC Laboratories Europe
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023