An imperfect information game is a type of game with asymmetric information

Overview

DecisionHoldem

An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect information game is more common in life. Artificial intelligence in imperfect games like poker has made significant progress and success in recent years. The great success of Superhuman Poker AI, such as Libratus and Deepstack, attracts researchers to pay attention to poker research. However, the lack of open source code limits the development of Texas Hold'em AI to some extent.

This project introduces DecisionHoldem, a high-level AI for heads-up no-limit Texas hold'em with safer depth-limited solving with diverse opponents ranges to reduce the exploitability of the strategy.DecisionHoldem is mainly composed of two parts, namely the blueprint strategy and the real-time search part.

In the blueprint strategy part, DecisionHoldem first employs the hand abstraction technique and action abstraction to obtain an abstracted game. Then we used the linear CFR algorithm iteration on the abstracted game tree to calculate blueprint strategy on a workstation with 48 core CPUs for 3 - 4 days. The total number of iterations is about 200 million.

In the real-time search part, we propose a safer depth-limited solving algorithm than modicum's depth-limited solving algorithm on subgame by putting more possible ranges of opponent private hands into consideration for off-tree nodes. This algorithm can significantly improve the AI game level by reducing the exploitability of the strategy. The details of the algorithm will be introduced in subsequent articles soon.

To evaluate the performance of DecisionHoldem, we play it against Slumbot and OpenStackTwo, respectively. Slumbot is the champion of the 2018 Anual Computer Poker Competition and the only high-level poker AI currently available. About 20,000 games against Slumbot, DecisionHoldem's average profit is more remarkable than 730mbb/h, and it ranked first in statistics on November 26, 2021 (DecisionHoldem's name on the ranking is zqbAgent[2,3]). OpenStackTwo built-in OpenHoldem Texas Hold'em Confrontation Platform is a reproduced version of DeepStack. With about 2,000 games against OpenStack[1], DecisionHoldem's average profit is more excellent than 700mbb/h.

To promote artificial intelligence development in imperfect-information games, we have open-sourced the relevant code of DecisionHoldem with tools for playing against the Slumbot, OpenHoldem and human[5]. Meanwhile, we provide a simple program about Leduc poker, which helps to understand the algorithm framework and its mechanism.

百度

Blueprint Strategy

Requirements

  • For C++11 support
  • GraphViz software

Installation

  1. Clone repositories:
$ git clone https://github.com/AI-Decision/DecisionHoldem.git
  1. copy followed file to DecisionHoldem/PokerAI/cluster
sevencards_strength.bin
preflop_hand_cluster.bin
flop_hand_cluster.bin
turn_hand_cluster.bin
river_hand_cluster.bin
blueprint_strategy.dat

These data can be obtained through Baidu Netdisk.

Link: https://pan.baidu.com/s/157n-H1ECjEryAx0Z03p2_w
Extraction code: q1pv

Training Blueprint Strategy

  • Compile and Run:
$ cd DecisionHoldem/PokerAI
$ g++ Main.cpp -o Main.o -std=c++11 -mcmodel=large -lpthread
$ ./Main.o 0
  • When training is finished, getting blueprint strategy "blueprint_strategy.dat" in DecisionHoldem/PokerAI/cluster.

Evaluation for Blueprint Strategy

  • Best Response:
$ cd DecisionHoldem/PokerAI
$ g++ Main.cpp -o Main.o -std=c++11 -mcmodel=large -lpthread
$ ./Main.o 1

Interface For Holdem Game

AlascasiaHoldem.so and blueprint.so provides a interface for the agent to play with other agent or human in real game scenario.

  • AlascasiaHoldem.so
    It plays with real search.
  • Blueprint.so
    It only uses the blueprint strategy to play.

Human Against Agent

GUI application refer to PyPokerGUI.

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/server/poker.py 8000

Tt is necessary that AlascasiaHoldem.so is in directory "DecisionHoldem/PokerAI/".

Result

localhost:8000 百度

Slumbot Against Agent

https://www.slumbot.com/#
Results on November 26, 2021, DecisionHoldem registered as zqbAgent and ranked first in the leaderboard.

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/play_with_slumbot.py

百度

百度

OpenStackTwo Against Agent

http://holdem.ia.ac.cn/#/battle

  • Run:
$ cd DecisionHoldem/PokerAI/
$ python DecisionHoldem/pypokergui/play_with_ia_v4.py 888891 2 Bot 2000 OpenStackTwo

The Agent_against_OpenStackTwo file contains the information for each game in 2000 games, including the each action probability of our agent, opponents actions and game state.

PokerAI Project Frameworks

├── Poker            # game tree code
│   ├── Node.h              # data structure of every node in game tree
│   ├── Bulid_Tree.h        # traverse every possible hole card, community cards and legal actions to bulid the game tree
│   ├── Exploitability.h    # it compute the exploitability of game tree policy
│   ├── Save_load.h         # it can save game tree policy to a file and load file to bulid a game tree
│   └── Visualize_Tree.h    # Visualize game Tree
│
├── util            # 
│   ├── Engine.h            # it compute game result, judging win person and the person can get the number of chips and get the cluster of the player's hand
│   ├── Exploitability.h    # compute the strategy of best response
│   ├── ThreadPool.h        # Multithread control
│   └── Randint.h           # the class is to generate random number
│
├── Poker           # the foundation class of the poker game
│   ├── Card.h              # every card class, it's id range from 0 to 51
│   ├── Deck.h              # deck class of cards, it contains 52 cards
│   ├── Player.h            # player class,it's attributes contain initial chips, bet chips, small or big blind
│   ├── Table.h             # it's attributes contain players, pot and deck
│   └── State.h             # it is game state, contain every players infoset, legal actions
│
├── Depth_limit_Search.h # it is a algorithm of real time searching in each subgame 
├── Multi_Blureprint.h   # it is a blueprint mccfr algorithm which running with the multithread
└── BlueprintMCCFR.cpp   # it is a blueprint mccfr algorithm which running with the single thread

The Detail of BlueprintMCCFR.h

blueprint_cfr function
  • MCCFR algorithm for training the blueprint strategy.
blueprint_cfrp function
  • MCCFR prune algorithm for training the blueprint strategy.
dfs_discount function
  • discount the regret value.
update_strategy function
  • update the average strategy of blueprint

Visualize Game Tree

  • After running the function of visualizationsearch(root, "blueprint_subnode.stgy"), current folder will generate a 'blueprint_subnode.stgy' file.
$ cd GraphViz/bin
$ dot -Tpng blueprint_subnode.stgy > temp.png

Game tree example

百度

Related projects

GUI is based on a project which can be found here: https://github.com/ishikota/PyPokerGUI
demo project: https://github.com/zqbAse/PokerAI_Sim

Note

[1] www.holdem.ia.ac.cn
[2] www.slumbot.com
[3] https://github.com/ericgjackson/slumbot2017/issues/11
[4] Development Environment:A workstation with an Intel(R) Xeon(R) Gold 6240R CPU, and 512GB of RAM.
[5] Currently some source codes only provide compiled files, and they will be open sourced in the near future.

Authors

The project leader is Junge Zhang , and the main contributors are Dongdong Bai and Qibin Zhou. Kaiqi Huang co-supervises this project as well. In recent years, this team has been devoting to reinforcement learning, multi-agent system, decision-making intelligence.

If you use DecisionHoldem in your research, please cite the following paper.

Qibin Zhou, Dongdong Bai, Junge Zhang, Fuqing Duan, Kaiqi Huang. DecisionHoldem: Safe Depth-Limited Solving With Diverse Opponents for Imperfect-Information Games

License

GNU Affero General Public License v3.0

Owner
Decision AI
Decision AI
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023