Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

Related tags

Deep LearningPS-SC
Overview

PS-SC GAN

trav_animation

This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction constraints) introduced in the paper Where and What? Examining Interpretable Disentangled Representations. The code for computing the TPL for model checkpoints from disentanglemen_lib can be found in this repository.

Abstract

Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.

Requirements

  • Python == 3.7.2
  • Numpy == 1.19.1
  • TensorFlow == 1.15.0
  • This code is based on StyleGAN2 which relies on custom TensorFlow ops that are compiled on the fly using NVCC. To test that your NVCC installation is working correctly, run:
nvcc test_nvcc.cu -o test_nvcc -run
| CPU says hello.
| GPU says hello.

Preparing datasets

CelebA. To prepare the tfrecord version of CelebA dataset, first download the original aligned-and-cropped version from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, then use the following code to create tfrecord dataset:

python dataset_tool.py create_celeba /path/to/new_tfr_dir /path/to/downloaded_celeba_dir

For example, the new_tfr_dir can be: datasets/celeba_tfr.

FFHQ. We use the 512x512 version which can be directly downloaded from the Google Drive link using browser. Or the file can be downloaded using the official script from Flickr-Faces-HQ. Put the xxx.tfrecords file into a two-level directory such as: datasets/ffhq_tfr/xxx.tfrecords.

Other Datasets. The tfrecords versions of DSprites and 3DShapes datasets can be produced

python dataset_tool.py create_subset_from_dsprites_npz /path/to/new_tfr_dir /path/to/dsprites_npz

and

python dataset_tool.py create_subset_from_shape3d /path/to/new_tfr_dir /path/to/shape3d_file

See dataset_tool.py for how other datasets can be produced.

Training

architecture

Pretrained models are shared here. To train a model on CelebA with 2 GPUs, run code:

CUDA_VISIBLE_DEVICES=0,1 \
    python run_training_ps_sc.py \
    --result-dir /path/to/results_ps_sc/celeba \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --metrics fid1k,tpl_small_0.3 \
    --num-gpus 2 \
    --mirror-augment True \
    --model_type ps_sc_gan \
    --C_lambda 0.01 \
    --fmap_decay 1 \
    --epsilon_loss 3 \
    --random_seed 1000 \
    --random_eps True \
    --latent_type normal \
    --batch_size 8 \
    --batch_per_gpu 4 \
    --n_samples_per 7 \
    --return_atts True \
    --I_fmap_base 10 \
    --G_fmap_base 9 \
    --G_nf_scale 6 \
    --D_fmap_base 10 \
    --fmap_min 64 \
    --fmap_max 512 \
    --topk_dims_to_show -1 \
    --module_list '[Const-512, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-up-1, C_spgroup-4-5, ResConv-id-1, Noise-2, ResConv-id-2]'

Note that for the dataset directory we need to separate the path into --data-dir and --dataset tags. The --model_type tag only specifies the PS-loss, and we need to use the C_spgroup-n_squares-n_codes in the --module_list tag to specify where to insert the Spatial Constriction modules in the generator. The latent traversals and metrics will be logged in the resulting directory. The --C_lambda tag is the hyper-parameter for modulating the PS-loss.

Evaluation

To evaluate a trained model, we can use the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_metrics.py \
    --result-dir /path/to/evaluate_results_dir \
    --network /path/to/xxx.pkl \
    --metrics fid50k,tpl_large_0.3,ppl2_wend \
    --data-dir /path/to/datasets \
    --dataset celeba_tfr \
    --include_I True \
    --mapping_nodup True \
    --num-gpus 1

where the --include_I is to indicate the model should be loaded with an inference network, and --mapping_nodup is to indicate that the loaded model has no W space duplication as in stylegan.

Generation

We can generate random images, traversals or gifs based on a pretrained model pkl using the following code:

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-images \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/gen_results_dir

and

CUDA_VISIBLE_DEVICES=0 \
    python run_generator_ps_sc.py generate-traversals \
    --network /path/to/xxx.pkl \
    --seeds 0-10 \
    --result-dir /path/to/traversal_results_dir

and

python run_generator_ps_sc.py \
    generate-gifs \
    --network /path/to/xxx.pkl \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --result-dir /path/to/results/gif \
    --used_imgs_ls '[sample1.png, sample2.png, sample3.png]' \
    --used_semantics_ls '[azimuth, haircolor, smile, gender, main_fringe, left_fringe, age, light_right, light_left, light_vertical, hair_style, clothes_color, saturation, ambient_color, elevation, neck, right_shoulder, left_shoulder, background_1, background_2, background_3, background_4, right_object, left_object]' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \
    --create_new_G True

A gif generation script is provided in the shared pretrained FFHQ folder. The images referred in --used_imgs_ls is provided in the imgs folder in this repository.

Attributes Editing

We can conduct attributes editing with a disentangled model. Currently we only use generated images for this experiment due to the unsatisfactory quality of the real-image projection into disentangled latent codes.

attr_edit

First we need to generate some images and put them into a directory, e.g. /path/to/existing_generated_imgs_dir. Second we need to assign the concepts to meaningful latent dimensions using the --attr2idx_dict tag. For example, if the 23th dimension represents azimuth concept, we add the item {azimuth:23} into the dictionary. Third we need to which images to provide source attributes. We use the --attr_source_dict tag to realize it. Note that there could be multiple dimensions representing a single concept (e.g. in the following example there are 4 dimensions capturing the background information), therefore it is more desirable to ensure the source images provide all these dimensions (attributes) as a whole. A source image can provide multiple attributes. Finally we need to specify the face-source images with --face_source_ls tag. All the face-source and attribute-source images should be located in the --exist_imgs_dir. An example code is as follows:

python run_editing_ps_sc.py \
    images-editing \
    --network /path/to/xxx.pkl \
    --result-dir /path/to/editing_results \
    --exist_imgs_dir git_repo/PS-SC/imgs \
    --face_source_ls '[sample1.png, sample2.png, sample3.png]' \
    --attr_source_dict '{sample1.png: [azimuth, smile]; sample2.png: [age,fringe]; sample3.png: [lighting_right,lighting_left,lighting_vertical]}' \
    --attr2idx_dict '{ambient_color:35, none1:34, light_right:33, saturation:32, light_left:31, background_4:30, background_3:29, gender:28, haircolor:27, background_2: 26, light_vertical:25, clothes_color:24, azimuth:23, right_object:22, main_fringe:21, right_shoulder:20, none4:19, background_1:18, neck:17, hair_style:16, smile:15, none6:14, left_fringe:13, none8:12, none9:11, age:10, shoulder:9, glasses:8, none10:7, left_object: 6, elevation:5, none12:4, none13:3, none14:2, left_shoulder:1, none16:0}' \

Accumulated Perceptual Distance with 2D Rotation

fringe_vs_background

If a disentangled model has been trained, the accumulated perceptual distance figures shown in Section 3.3 (and Section 8 in the Appendix) can be plotted using the model checkpoint with the following code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    plot-rot-fn \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/rot_19_5

The 2D latent traversal grid can be presented with code:

# Celeba
# The dimension for concepts: azimuth: 9; haircolor: 19; smile: 5; hair: 4; fringe: 11; elevation: 10; back: 18;
CUDA_VISIBLE_DEVICES=0 \
    python plot_latent_space.py \
    generate-grids \
    --network /path/to/xxx.pkl \
    --seeds 1-10 \
    --latent_pair 19_5 \
    --load_gan True \
    --result-dir /path/to/acc_results/grid_19_5

Citation

@inproceedings{Xinqi_cvpr21,
author={Xinqi Zhu and Chang Xu and Dacheng Tao},
title={Where and What? Examining Interpretable Disentangled Representations},
booktitle={CVPR},
year={2021}
}
Owner
Xinqi/Steven Zhu
Xinqi/Steven Zhu
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022