[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

Related tags

Deep Learningrapid
Overview

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning

This is the Tensorflow implementation of ICLR 2021 paper Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments. We propose a simple method RAPID for exploration through scroring the previous episodes and reproducing the good exploration behaviors with imitation learning. overview

The implementation is based on OpenAI baselines. For all the experiments, add the option --disable_rapid to see the baseline result. RAPID can achieve better performance and sample efficiency than state-of-the-art exploration methods on MiniGrid environments. rendering performance

Cite This Work

@inproceedings{
zha2021rank,
title={Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments},
author={Daochen Zha and Wenye Ma and Lei Yuan and Xia Hu and Ji Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=MtEE0CktZht}
}

Installation

Please make sure that you have Python 3.5+ installed. First, clone the repo with

git clone https://github.com/daochenzha/rapid.git
cd rapid

Then install the dependencies with pip:

pip install -r requirements.txt
pip install -e .

To run MuJoCo experiments, you need to have the MuJoCo license. Install mujoco-py with

pip install mujoco-py==1.50.1.68

How to run the code

The entry is main.py. Some important hyperparameters are as follows.

  • --env: what environment to be used
  • --num_timesteps: the number of timesteps to be run
  • --w0: the weight of extrinsic reward score
  • --w1: the weight of local score
  • --w2: the weight of global score
  • --sl_until: do the RAPID update until which timestep
  • --disable_rapid: use it to compare with PPO baseline
  • --log_dir: the directory to save logs

Reproducing the result of MiniGrid environments

For MiniGrid-KeyCorridorS3R2, run

python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000

For MiniGrid-KeyCorridorS3R3, run

python main.py --env MiniGrid-KeyCorridorS3R3-v0 --sl_until 3000000

For other environments, run

python main.py --env $ENV

where $ENV is the environment name.

Run MiniWorld Maze environment

  1. Clone the latest master branch of MiniWorld and install it
git clone -b master --single-branch --depth=1 https://github.com/maximecb/gym-miniworld.git
cd gym-miniwolrd
pip install -e .
cd ..
  1. Start training with
python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

For server without screens, you may install xvfb with

apt-get install xvfb

Then start training with

xvfb-run -a -s "-screen 0 1024x768x24 -ac +extension GLX +render -noreset" python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

Run MuJoCo experiments

Run

python main.py --seed 0 --env $env --num_timesteps 5000000 --lr 5e-4 --w1 0.001 --w2 0.0 --log_dir logs/$ENV/rapid

where $ENV can be EpisodeSwimmer-v2, EpisodeHopper-v2, EpisodeWalker2d-v2, EpisodeInvertedPendulum-v2, DensityEpisodeSwimmer-v2, or ViscosityEpisodeSwimmer-v2.

Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022