Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

Overview

How Well Do Self-Supervised Models Transfer?

This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Models Transfer?

Requirements

This codebase has been tested with the following package versions:

python=3.6.8
torch=1.2.0
torchvision=0.4.0
PIL=7.1.2
numpy=1.18.1
scipy=1.2.1
pandas=1.0.3
tqdm=4.31.1
sklearn=0.22.2

Pre-trained Models

In the paper we evaluate 14 pre-trained ResNet50 models, 13 self-supervised and 1 supervised. To download and prepare all models in the same format, run:

python download_and_prepare_models.py

This will prepare the models in the same format and save them in a directory named models.

Note 1: For SimCLR-v1 and SimCLR-v2, the TensorFlow checkpoints need to be downloaded manually (using the links in the table below) and converted into PyTorch format (using https://github.com/tonylins/simclr-converter and https://github.com/Separius/SimCLRv2-Pytorch, respectively).

Note 2: In order to convert BYOL, you may need to install some packages by running:

pip install jax jaxlib dill git+https://github.com/deepmind/dm-haiku

Below are links to the pre-trained weights used.

Model URL
InsDis https://www.dropbox.com/sh/87d24jqsl6ra7t2/AACcsSIt1_Njv7GsmsuzZ6Sta/InsDis.pth
MoCo-v1 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v1_200ep/moco_v1_200ep_pretrain.pth.tar
PCL-v1 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v1_epoch200.pth.tar
PIRL https://www.dropbox.com/sh/87d24jqsl6ra7t2/AADN4jKnvTI0U5oT6hTmQZz8a/PIRL.pth
PCL-v2 https://storage.googleapis.com/sfr-pcl-data-research/PCL_checkpoint/PCL_v2_epoch200.pth.tar
SimCLR-v1 https://storage.cloud.google.com/simclr-gcs/checkpoints/ResNet50_1x.zip
MoCo-v2 https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_800ep/moco_v2_800ep_pretrain.pth.tar
SimCLR-v2 https://console.cloud.google.com/storage/browser/simclr-checkpoints/simclrv2/pretrained/r50_1x_sk0
SeLa-v2 https://dl.fbaipublicfiles.com/deepcluster/selav2_400ep_pretrain.pth.tar
InfoMin https://www.dropbox.com/sh/87d24jqsl6ra7t2/AAAzMTynP3Qc8mIE4XWkgILUa/InfoMin_800.pth
BYOL https://storage.googleapis.com/deepmind-byol/checkpoints/pretrain_res50x1.pkl
DeepCluster-v2 https://dl.fbaipublicfiles.com/deepcluster/deepclusterv2_800ep_pretrain.pth.tar
SwAV https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar
Supervised We use weights from torchvision.models.resnet50(pretrained=True)

Datasets

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    CIFAR10/
    DTD/
    ...
ssl-transfer/
    datasets/
    models/
    readme.md
    ...

Many-shot (Linear)

We provide the code for our linear evaluation in linear.py.

To evaluate DeepCluster-v2 on CIFAR10 given our pre-computed best regularisation hyperparameter, run:

python linear.py --dataset cifar10 --model deepcluster-v2 --C 0.316

The test accuracy should be close to 94.07%, the value reported in Table 1 of the paper.

To evaluate the Supervised baseline, run:

python linear.py --dataset cifar10 --model supervised --C 0.056

This model should achieve close to 91.47%.

To search for the best regularisation hyperparameter on the validation set, exclude the --C argument:

python linear.py --dataset cifar10 --model supervised

Finally, when using SimCLR-v1 or SimCLR-v2, always use the --no-norm argument:

python linear.py --dataset cifar10 --model simclr-v1 --no-norm

Many-shot (Finetune)

We provide code for finetuning in finetune.py.

To finetune DeepCluster-v2 on CIFAR10, run:

python finetune.py --dataset cifar10 --model deepcluster-v2

This model should achieve close to 97.06%, the value reported in Table 1 of the paper.

Few-shot (Kornblith & CD-FSL)

We provide the code for our few-shot evaluation in few_shot.py.

To evaluate DeepCluster-v2 on EuroSAT in a 5-way 5-shot setup, run:

python few_shot.py --dataset eurosat --model deepcluster-v2 --n-way 5 --n-support 5

The test accuracy should be close to 88.39% ± 0.49%, the value reported in Table 2 of the paper.

Or, to evaluate the Supervised baseline on ChestX in a 5-way 50-shot setup, run:

python few_shot.py --dataset chestx --model supervised --n-way 5 --n-support 50

This model should achieve close to 32.34% ± 0.45%.

Object Detection

We use the detectron2 framework to train our models on PASCAL VOC object detection.

Below is an outline of the expected file structure, including config files, converted models and the detectron2 framework:

detectron2/
    tools/
        train_net.py
        ...
    ...
ssl-transfer/
    detectron2-configs/
        finetune/
            byol.yaml
            ...
        frozen/
            byol.yaml
            ...
    models/
        detectron2/
            byol.pkl
            ...
        ...
    ...

To set it up, perform the following steps:

  1. Install detectron2 (requries PyTorch 1.5 or newer). We expect the installed framework to be located at the same level as this repository, see outline of expected file structure above.
  2. Convert the models into the format used by detectron2 by running python convert_to_detectron2.py. The converted models will be saved in a directory called detectron2 inside the models directory.

We include the config files for the frozen training in detectron2-configs/frozen and for full finetuning in detectron2-configs/finetune. In order to train models, navigate into detectron2/tools/. We can now train e.g. BYOL with a frozen backbone on 1 GPU by running:

./train_net.py --num-gpus 1 --config-file ../../ssl-transfer/detectron2-configs/frozen/byol.yaml OUTPUT_DIR ./output/byol-frozen

This model should achieve close to 82.01 AP50, the value reported in Table 3 of the paper.

Surface Normal Estimation

The code for running the surface normal estimation experiments is given in the surface-normal-estimation. We use the MIT CSAIL Semantic Segmentation Toolkit, but there is also a docker configuration file that can be used to build a container with all the dependencies installed. One can train a model with a command like:

./scripts/train_finetune_models.sh <pretrained-model-path> <checkpoint-directory>

and the resulting model can be evaluated with

./scripts/test_models.sh <checkpoint-directory>

Semantic Segmentation

We also use the same framework performing semantic segmentation. As per the surface normal estimation experiments, we include a docker configuration file to make getting dependencies easier. Before training a semantic segmentation model you will need to change the paths in the relevant YAML configuration file to point to where you have stored the pre-trained models and datasets. Once this is done the training script can be run with, e.g.,

python train.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

where selfsupconfig/byol.yaml is the aforementioned configuration file. The resulting model can be evaluated with

python eval_multipro.py --gpus 0,1 --cfg selfsupconfig/byol.yaml

Citation

If you find our work useful for your research, please consider citing our paper:

@inproceedings{Ericsson2021HowTransfer,
    title = {{How Well Do Self-Supervised Models Transfer?}},
    year = {2021},
    booktitle = {CVPR},
    author = {Ericsson, Linus and Gouk, Henry and Hospedales, Timothy M.},
    url = {http://arxiv.org/abs/2011.13377},
    arxivId = {2011.13377}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023