PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Overview

WarpedGANSpace: Finding non-linear RBF paths in GAN latent space

Authors official PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021). If you use this code for your research, please cite our paper.

Overview

In this work, we try to discover non-linear interpretable paths in GAN latent space. For doing so, we model non-linear paths using RBF-based warping functions, which by warping the latent space, endow it with vector fields (their gradients). We use the latter to traverse the latent space across the paths determined by the aforementioned vector fields for any given latent code.

WarpedGANSpace Overview

Each warping function is defined by a set of N support vectors (a "support set") and its gradient is given analytically as shown above. For a given warping function fk and a given latent code z, we traverse the latent space as illustrated below:

Non-linear interpretable path

Each warping function gives rise to a family of non-linear paths. We learn a set of such warping functions (implemented by the *Warping Network*), i.e., a set of such non-linear path families, so as they are distinguishable to each other; that is, the image transformations that they produce should be easily distinguishable be a discriminator network (the *Reconstructor*). An overview of the method is given below.

WarpedGANSpace Overview

Installation

We recommend installing the required packages using python's native virtual environment. For Python 3.4+, this can be done as follows:

$ python -m venv warped-gan-space
$ source warped-gan-space/bin/activate
(warped-gan-space) $ pip install --upgrade pip
(warped-gan-space) $ pip install -r requirements.txt

Prerequisite pretrained models

Download the prerequisite pretrained models (i.e., GAN generators, face detector, pose estimator, etc.) as follows:

$ python download.py	

This will create a directory models/pretrained with the following sub-directories (~3.2GiB):

./models/pretrained/
├── generators/
├── arcface/
├── fairface/
├── hopenet/
└── sfd/

Training

For training a WarpedGANSpace model you need to use train.py (check its basic usage by running python train.py -h).

For example, in order to train a WarpedGANSpace model on the ProgGAN pre-trained (on CelebA) generator for discovering K=128 interpretable paths (latent warping functions) with N=32 support dipoles each (i.e., 32 pairs of bipolar RBFs) run the following command:

python train.py -v --gan-type=ProgGAN --reconstructor-type=ResNet --learn-gammas --num-support-sets=128 --num-support-dipoles=32 --min-shift-magnitude=0.15 --max-shift-magnitude=0.25 --batch-size=8 --max-iter=200000

In the example above, batch size is set to 8 and the training will be conducted for 200000 iterations. Minimum and maximum shift magnitudes are set to 0.15 and 0.25, respectively (please see Sect. 3.2 in the paper for more details). A set of auxiliary training scripts (for all available GAN generators) can be found under scripts/train/.

The training script will create a directory with the following name format:


   
    (-
    
     )-
     
      -K
      
       -N
       
        (-LearnAlphas)(-LearnGammas)-eps
        
         _
          
         
        
       
      
     
    
   

E.g., ProgGAN-ResNet-K128-N128-LearnGammas-eps0.15_0.25, under experiments/wip/ while training is in progress, which after training completion, will be copied under experiments/complete/. This directory has the following structure:

├── models/
├── tensorboard/
├── args.json
├── stats.json
└── command.sh

where models/ contains the weights for the reconstructor (reconstructor.pt) and the support sets (support_sets.pt). While training is in progress (i.e., while this directory is found under experiments/wip/), the corresponding models/ directory contains a checkpoint file (checkpoint.pt) containing the last iteration, and the weights for the reconstructor and the support sets, so as to resume training. Re-run the same command, and if the last iteration is less than the given maximum number of iterations, training will resume from the last iteration. This directory will be referred to as EXP_DIR for the rest of this document.

Evaluation

After a WarpedGANSpace is trained, the corresponding experiment's directory (i.e., EXP_DIR) can be found under experiments/complete/. The evaluation of the model includes the following steps:

  • Latent space traversals For a given set of latent codes, we first generate images for all K paths (warping functions) and save the traversals (path latent codes and generated image sequences).
  • Attribute space traversals In the case of facial images (i.e., ProgGAN and StyleGAN2), for the latent traversals above, we calculate the corresponding attribute paths (i.e., facial expressions, pose, etc.).
  • Interpretable paths discovery and ranking [To Appear Soon]

Before calculating latent space traversals, you need to create a pool of latent codes/images for the corresponding GAN type. This can be done using sample_gan.py. The name of the pool can be passed using --pool; if left empty will be used instead. The pool of latent codes/images will be stored under experiments/latent_codes/ / . We will be referring to it as a POOL for the rest of this document.

For example, the following command will create a pool named ProgGAN_4 under experiments/latent_codes/ProgGAN/:

python sample_gan.py -v --gan-type=ProgGAN --num-samples=4

Latent space traversals

Latent space traversals can be calculated using the script traverse_latent_space.py (please check its basic usage by running traverse_latent_space.py -h) for a given model and a given POOL.

Attribute space traversals

[To Appear Soon]

Interpretable paths discovery and ranking

[To Appear Soon]

Citation

[1] Christos Tzelepis, Georgios Tzimiropoulos, and Ioannis Patras. WarpedGANSpace: Finding non-linear rbf paths in gan latent space. IEEE International Conference on Computer Vision (ICCV), 2021.

Bibtex entry:

@inproceedings{warpedganspace,
  title={{WarpedGANSpace}: Finding non-linear {RBF} paths in {GAN} latent space},
  author={Tzelepis, Christos and Tzimiropoulos, Georgios and Patras, Ioannis},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Acknowledgment

This research was supported by the EU's Horizon 2020 programme H2020-951911 AI4Media project.

Owner
Christos Tzelepis
Postdoctoral research associate at Queen Mary University of London | MultiMedia & Vision Research Group (MMV Group).
Christos Tzelepis
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021