DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Overview

Dimensionality Reduction + Clustering + Unsupervised Score Metrics

  1. Introduction
  2. Installation
  3. Usage
  4. Hyperparameters matters
  5. BayesSearch example

1. Introduction

DimReductionClustering is a sklearn estimator allowing to reduce the dimension of your data and then to apply an unsupervised clustering algorithm. The quality of the cluster can be done according to different metrics. The steps of the pipeline are the following:

  • Perform a dimension reduction of the data using UMAP
  • Numerically find the best epsilon parameter for DBSCAN
  • Perform a density based clustering methods : DBSCAN
  • Estimate cluster quality using silhouette score or DBCV

2. Installation

Use the package manager pip to install DimReductionClustering like below. Rerun this command to check for and install updates .

!pip install umap-learn
!pip install git+https://github.com/christopherjenness/DBCV.git

!pip install git+https://github.com/MathieuCayssol/DimReductionClustering.git

3. Usage

Example on mnist data.

  • Import the data
from sklearn.model_selection import train_test_split
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[1]))
X, X_test, Y, Y_test = train_test_split(x_train, y_train, stratify=y_train, test_size=0.9)
  • Instanciation + fit the model (same interface as a sklearn estimators)
model = DimReductionClustering(n_components=2, min_dist=0.000001, score_metric='silhouette', knn_topk=8, min_pts=4).fit(X)

Return the epsilon using elbow method :

  • Show the 2D plot :
model.display_plotly()

  • Get the score (Silhouette coefficient here)
model.score()

4. Hyperparameters matters

4.1 UMAP (dim reduction)

  • n_neighbors (global/local tradeoff) (default:15 ; 2-1/4 of data)

    → low value (glue small chain, more local)

    → high value (glue big chain, more global)

  • min_dist (0 to 0.99) the minimum distance apart that points are allowed to be in the low dimensional representation. This means that low values of min_dist will result in clumpier embeddings. This can be useful if you are interested in clustering, or in finer topological structure. Larger values of min_dist will prevent UMAP from packing points together and will focus on the preservation of the broad topological structure instead.

  • n_components low dimensional space. 2 or 3

  • metric (’euclidian’ by default). For NLP, good idea to choose ‘cosine’ as infrequent/frequent words will have different magnitude.

4.2 DBSCAN (clustering)

  • min_pts MinPts ≥ 3. Basic rule : = 2 * Dimension (4 for 2D and 6 for 3D). Higher for noisy data.

  • Epsilon The maximum distance between two samples for one to be considered as in the neighborhood of the other. k-distance graph with k nearest neighbor. Sort result by descending order. Find elbow using orthogonal projection on a line between first and last point of the graph. y-coordinate of max(d((x,y),Proj(x,y))) is the optimal epsilon. Click here to know more about elbow method

! There is no Epsilon hyperparameters in the implementation, only k-th neighbor for KNN.

  • knn_topk k-th Nearest Neighbors. Between 3 and 20.

4.3 Score metric

5. BayesSearch example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
#UMAP Hyperparameters
search_space.append(Integer(5, 200, name='n_neighbors', prior='uniform'))
search_space.append(Real(0.0000001, 0.2, name='min_dist', prior='uniform'))
#Search epsilon with KNN Hyperparameters
search_space.append(Integer(3, 20, name='knn_topk', prior='uniform'))
#DBSCAN Hyperparameters
search_space.append(Integer(4, 15, name='min_pts', prior='uniform'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(X.shape[0])]  # indices for training
test_indices = [i for i in range(X.shape[0])]  # indices for testing

cv = [(train_indices, test_indices)]

clf = BayesSearchCV(estimator=DimReductionClustering(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022