NALSM: Neuron-Astrocyte Liquid State Machine

Related tags

Deep LearningNALSM
Overview

NALSM: Neuron-Astrocyte Liquid State Machine

This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that introduces astrocyte-modulated STDP to the Liquid State Machine learning framework for improved accuracy performance and minimal tuning.

The paper has been accepted at NeurIPS 2021, available here.

Citation

Vladimir A. Ivanov and Konstantinos P. Michmizos. "Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity." 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

@inproceedings{ivanov_2021,
author = {Ivanov, Vladimir A. and Michmizos, Konstantinos P.},
title = {Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity},
year = {2021},
pages={1--10},
booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)}
}

Software Installation

  • Python 3.6.9
  • Tensorflow 2.1 (with CUDA 11.2 using tensorflow.compat.v1)
  • Numpy
  • Multiprocessing

Usage

This code performs the following functions:

  1. Generate the 3D network
  2. Train NALSM
  3. Evaluate trained model accuracy
  4. Evaluate trained model branching factor
  5. Evaluate model kernel quality

Instructions for obtaining/setting up datasets can be accessed here.

Overview of all files can be accessed here.

1. Generate 3D Network

To generate the 3D network, enter the following command:

python generate_spatial_network.py

This will prompt for following inputs:

  • WHICH_DATASET_TO_GENERATE_NETWORK_FOR? [TYPE M FOR MNIST/ N FOR NMNIST] : enter M to make a network with an input layer sized for MNIST/Fashion-MNIST or N for N-MNIST.
  • NETWORK_NUMBER_TO_CREATE? [int] : enter an integer to label the network.
  • SIZE_OF_LIQUID_DIMENSION_1? [int] : enter an integer representing the number of neurons to be in dimension 1 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_2? [int] : enter an integer representing the number of neurons to be in dimension 2 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_3? [int] : enter an integer representing the number of neurons to be in dimension 3 of liquid.

The run file will generate the network and associated log file containing data about the liquid (i.e. connection densities) in sub-directory

/ /networks/ .

2. Train NALSM

2.1 MNIST

To train NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST.py

This will prompt for the following inputs:

  • GPU? : enter an integer specifying the gpu to use for training.
  • VERSION? [int] : enter an integer to label the training simulation.
  • NET_NUM_VAR? [int] : enter the number of the network created in Section 1.
  • BATCH_SIZE? [int] : specify the number of samples to train at same time (batch), for liquids with 1000 neurons, batch size of 250 will work on a 12gb gpu. For larger liquids(8000), smaller batch sizes of 50 should work.
  • BATCHS_PER_BLOCK? [int] : specify number of batchs to keep in memory for training output layer, we found 2500 samples works well in terms of speed and memory (so for batch size of 250, this should be set to 10 (10 x 250 = 2500), for batch size 50 set this to 50 (50 x 50 = 2500).
  • ASTRO_W_SCALING? [float] : specify the astrocyte weight detailed in equation 7 of paper. We used 0.015 for all 1000 neuron liquids, and 0.0075 for 8000 neuron liquids. Generally accuracy peaks with a value around 0.01 (See Appendix).

This will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

2.2 N-MNIST

To train NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

2.3 Fashion-MNIST

To train NALSM model on Fashion-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_F_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

Instructions for training other benchmarked LSM models can be accessed here.

3. Evaluate Trained Model Accuracy

To get accuracy of a trained model, enter the following command:

python get_test_accuracy.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model

This will find the epoch with maximum validation accuracy and return the test accuracy for that epoch.

4. Evaluate Model Branching Factor

To compute the branching factor of a trained model, enter the following command:

python compute_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The trained model directory must have atleast one .spikes file, which contains millisecond spike data of each neuron for 20 arbitrarily selected input samples in a batch. The run file will generate a .bf file with same name as the .spikes file.

To read the generated .bf file, enter the following command:

python get_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The run file will print the average branching factor over the 20 samples.

5. Evaluate Model Kernel Quality

Model liquid kernel quality was calculated from the linear speration (SP) and generalization (AP) metrics for MNIST and N-MNIST datasets. To compute SP and AP metrics, first noisy spike counts must be generated for the AP metric, as follows.

To generate noisy spike counts for NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST_NOISE.py

The run file requires a W_INI.wdata file (the initialized weights), which should have been generated during model training.

The run file will prompt for the following inputs:

  • GPU? : enter an integer to select the gpu for the training simulation.
  • VERSION? [int] : enter the version number of the trained model.
  • NET_NUM_VAR? [int] : enter the network number of the trained model.
  • BATCH_SIZE? [int] : use the same value used for training the model.
  • BATCHS_PER_BLOCK? [int] : use the same value used for training the model.

The run file will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

To generate noisy spike counts for NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST_NOISE.py

As above, the run file requires 'W_INI.wdata' file. All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST_NOISE.py.

After generating the noisy spike counts, to compute the SP and AP metrics for each trained model enter the following command:

python compute_SP_AP_kernel_quality_measures.py

The run file will prompt for inputs:

  • VERSION? [int] : enter the version number of the trained model.
  • DATASET_MODEL_WAS_TRAINED_ON? [TYPE M FOR MNIST/ N FOR NMNIST] : enter dataset the model was trained on. The run file will print out the SP and AP metrics.

Instructions for evaluating kernel quality for other benchmarked LSM models can be accessed here.

Owner
Computational Brain Lab
Computational Brain Lab @ Rutgers University
Computational Brain Lab
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022