NALSM: Neuron-Astrocyte Liquid State Machine

Related tags

Deep LearningNALSM
Overview

NALSM: Neuron-Astrocyte Liquid State Machine

This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that introduces astrocyte-modulated STDP to the Liquid State Machine learning framework for improved accuracy performance and minimal tuning.

The paper has been accepted at NeurIPS 2021, available here.

Citation

Vladimir A. Ivanov and Konstantinos P. Michmizos. "Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity." 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

@inproceedings{ivanov_2021,
author = {Ivanov, Vladimir A. and Michmizos, Konstantinos P.},
title = {Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity},
year = {2021},
pages={1--10},
booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)}
}

Software Installation

  • Python 3.6.9
  • Tensorflow 2.1 (with CUDA 11.2 using tensorflow.compat.v1)
  • Numpy
  • Multiprocessing

Usage

This code performs the following functions:

  1. Generate the 3D network
  2. Train NALSM
  3. Evaluate trained model accuracy
  4. Evaluate trained model branching factor
  5. Evaluate model kernel quality

Instructions for obtaining/setting up datasets can be accessed here.

Overview of all files can be accessed here.

1. Generate 3D Network

To generate the 3D network, enter the following command:

python generate_spatial_network.py

This will prompt for following inputs:

  • WHICH_DATASET_TO_GENERATE_NETWORK_FOR? [TYPE M FOR MNIST/ N FOR NMNIST] : enter M to make a network with an input layer sized for MNIST/Fashion-MNIST or N for N-MNIST.
  • NETWORK_NUMBER_TO_CREATE? [int] : enter an integer to label the network.
  • SIZE_OF_LIQUID_DIMENSION_1? [int] : enter an integer representing the number of neurons to be in dimension 1 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_2? [int] : enter an integer representing the number of neurons to be in dimension 2 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_3? [int] : enter an integer representing the number of neurons to be in dimension 3 of liquid.

The run file will generate the network and associated log file containing data about the liquid (i.e. connection densities) in sub-directory

/ /networks/ .

2. Train NALSM

2.1 MNIST

To train NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST.py

This will prompt for the following inputs:

  • GPU? : enter an integer specifying the gpu to use for training.
  • VERSION? [int] : enter an integer to label the training simulation.
  • NET_NUM_VAR? [int] : enter the number of the network created in Section 1.
  • BATCH_SIZE? [int] : specify the number of samples to train at same time (batch), for liquids with 1000 neurons, batch size of 250 will work on a 12gb gpu. For larger liquids(8000), smaller batch sizes of 50 should work.
  • BATCHS_PER_BLOCK? [int] : specify number of batchs to keep in memory for training output layer, we found 2500 samples works well in terms of speed and memory (so for batch size of 250, this should be set to 10 (10 x 250 = 2500), for batch size 50 set this to 50 (50 x 50 = 2500).
  • ASTRO_W_SCALING? [float] : specify the astrocyte weight detailed in equation 7 of paper. We used 0.015 for all 1000 neuron liquids, and 0.0075 for 8000 neuron liquids. Generally accuracy peaks with a value around 0.01 (See Appendix).

This will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

2.2 N-MNIST

To train NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

2.3 Fashion-MNIST

To train NALSM model on Fashion-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_F_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

Instructions for training other benchmarked LSM models can be accessed here.

3. Evaluate Trained Model Accuracy

To get accuracy of a trained model, enter the following command:

python get_test_accuracy.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model

This will find the epoch with maximum validation accuracy and return the test accuracy for that epoch.

4. Evaluate Model Branching Factor

To compute the branching factor of a trained model, enter the following command:

python compute_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The trained model directory must have atleast one .spikes file, which contains millisecond spike data of each neuron for 20 arbitrarily selected input samples in a batch. The run file will generate a .bf file with same name as the .spikes file.

To read the generated .bf file, enter the following command:

python get_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The run file will print the average branching factor over the 20 samples.

5. Evaluate Model Kernel Quality

Model liquid kernel quality was calculated from the linear speration (SP) and generalization (AP) metrics for MNIST and N-MNIST datasets. To compute SP and AP metrics, first noisy spike counts must be generated for the AP metric, as follows.

To generate noisy spike counts for NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST_NOISE.py

The run file requires a W_INI.wdata file (the initialized weights), which should have been generated during model training.

The run file will prompt for the following inputs:

  • GPU? : enter an integer to select the gpu for the training simulation.
  • VERSION? [int] : enter the version number of the trained model.
  • NET_NUM_VAR? [int] : enter the network number of the trained model.
  • BATCH_SIZE? [int] : use the same value used for training the model.
  • BATCHS_PER_BLOCK? [int] : use the same value used for training the model.

The run file will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

To generate noisy spike counts for NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST_NOISE.py

As above, the run file requires 'W_INI.wdata' file. All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST_NOISE.py.

After generating the noisy spike counts, to compute the SP and AP metrics for each trained model enter the following command:

python compute_SP_AP_kernel_quality_measures.py

The run file will prompt for inputs:

  • VERSION? [int] : enter the version number of the trained model.
  • DATASET_MODEL_WAS_TRAINED_ON? [TYPE M FOR MNIST/ N FOR NMNIST] : enter dataset the model was trained on. The run file will print out the SP and AP metrics.

Instructions for evaluating kernel quality for other benchmarked LSM models can be accessed here.

Owner
Computational Brain Lab
Computational Brain Lab @ Rutgers University
Computational Brain Lab
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022