Geometric Algebra package for JAX

Overview

JAXGA - JAX Geometric Algebra

Build status PyPI

GitHub | Docs

JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing only the non-zero basis blade coefficients. It makes use of JAX's just-in-time (JIT) compilation by first precomputing blade indices and signs and then JITting the function doing the actual calculations.

Installation

Install using pip: pip install jaxga

Requirements:

Usage

Unlike most other Geometric Algebra packages, it is not necessary to pre-specify an algebra. JAXGA can either be used with the MultiVector class or by using lower-level functions which is useful for example when using JAX's jit or automatic differentaition.

The MultiVector class provides operator overloading and is constructed with an array of values and their corresponding basis blades. The basis blades are encoded as tuples, for example the multivector 2 e_1 + 4 e_23 would have the values [2, 4] and the basis blade tuple ((1,), (2, 3)).

MultiVector example

import jax.numpy as jnp
from jaxga.mv import MultiVector

a = MultiVector(
    values=2 * jnp.ones([1], dtype=jnp.float32),
    indices=((1,),)
)
# Alternative: 2 * MultiVector.e(1)

b = MultiVector(
    values=4 * jnp.ones([2], dtype=jnp.float32),
    indices=((2, 3),)
)
# Alternative: 4 * MultiVector.e(2, 3)

c = a * b
print(c)

Output: Multivector(8.0 e_{1, 2, 3})

The lower-level functions also deal with values and blades. Functions are provided that take the blades and return a function that does the actual calculation. The returned function is JITted and can also be automatically differentiated with JAX. Furthermore, some operations like the geometric product take a signature function that takes a basis vector index and returns their square.

Lower-level function example

import jax.numpy as jnp
from jaxga.signatures import positive_signature
from jaxga.ops.multiply import get_mv_multiply

a_values = 2 * jnp.ones([1], dtype=jnp.float32)
a_indices = ((1,),)

b_values = 4 * jnp.ones([1], dtype=jnp.float32)
b_indices = ((2, 3),)

mv_multiply, c_indices = get_mv_multiply(a_indices, b_indices, positive_signature)
c_values = mv_multiply(a_values, b_values)
print("C indices:", c_indices, "C values:", c_values)

Output: C indices: ((1, 2, 3),) C values: [8.]

Some notes

  • Both the MultiVector and lower-level function approaches support batches: the axes after the first one (which indexes the basis blades) are treated as batch indices.
  • The MultiVector class can also take a signature in its constructor (default is square to 1 for all basis vectors). Doing operations with MultiVectors with different signatures is undefined.
  • The jaxga.signatures submodule contains a few predefined signature functions.
  • get_mv_multiply and similar functions cache their result by their inputs.
  • The flaxmodules submodule provides flax (a popular neural network library for jax) modules with Geometric Algebra operations.
  • Because we don't deal with a specific algebra, the dual needs an input that specifies the dimensionality of the space in which we want to find the dual element.

Benchmarks

N-d vector * N-d vector, batch size 100, N=range(1, 10), CPU

JaxGA stores only the non-zero basis blade coefficients. TFGA and Clifford on the other hand store all GA elements as full multivectors including all zeros. As a result, JaxGA does better than these for high dimensional algebras.

Below is a benchmark of the geometric product of two vectors with increasing dimensionality from 1 to 9. 100 vectors are multiplied at a time.

JAXGA (CPU) tfga (CPU) clifford
benchmark-results benchmark-results benchmark-results

N-d vector * N-d vector, batch size 100, N=range(1, 50, 5), CPU

Below is a benchmark for higher dimensions that TFGA and Clifford could not handle. Note that the X axis isn't sorted naturally.

benchmark-results

Owner
Robin Kahlow
Software / Machine Learning Engineer
Robin Kahlow
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022