💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

Related tags

Deep LearningVALSE
Overview

VALSE 💃

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena. https://arxiv.org/abs/2112.07566

Data Instructions

Please find the data in the data folder. The dataset is in json format and contains the following relevant fields:

  • A reference to the image in the original dataset: dataset and image_file.
  • The valid sentence, the caption for VALSE: caption.
  • The altered caption, the foil.
  • The annotator's votes (3 annotators per sample): mturk.
    • The subentry caption counts the number of annotators who chose the caption, but/and not the foil, to be the one describing the image.
    • The subentry foil counts how many of the three annotators chose the foil to be (also) describing the image.
    • For more information, see subsec. 4.4 and App. E of the paper.

‼️ Please be aware that the jsons are containing both valid (meaning: validated by annotators) and non-validated samples. In order to work only with the valid set, please consider filtering them:

We consider a valid foil to mean: at least two out of three annotators identified the caption, but not the foil, as the text which accurately describes the image.

This means that the valid samples of the dataset are the ones where sample["mturk"]["caption"] >= 2.

Example instance:

{
    "actions_test_0": {
        "dataset": "SWiG",
        "original_split": "test",                 # the split of the original dataset in which the sample belonged to
        "dataset_idx": "exercising_255.jpg",      # the sample id in the original dataset
        "linguistic_phenomena": "actions",        # the linguistic phenomenon targeted
        "image_file": "exercising_255.jpg",
        "caption": "A man exercises his torso.",
        "classes": "man",                         # the word of the caption that was replaced
        "classes_foil": "torso",                  # the foil word / phrase
        "mturk": {
            "foil": 0,
            "caption": 3,
            "other": 0
        },
        "foil": "A torso exercises for a man."
    }, ...
}

Images

For the images, please follow the downloading instructions of the respective original dataset. The provenance of the original images is mentioned in the json files in the field dataset.

Reference

Please cite our 💃 VALSE paper if you are using this dataset.

@misc{parcalabescu2021valse,
      title={VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena}, 
      author={Letitia Parcalabescu and Michele Cafagna and Lilitta Muradjan and Anette Frank and Iacer Calixto and Albert Gatt},
      year={2021},
      eprint={2112.07566},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Heidelberg-NLP
Heidelberg Natural Language Processing Group
Heidelberg-NLP
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022