Image morphing without reference points by applying warp maps and optimizing over them.

Overview

Differentiable Morphing

Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing is machine learning algorithm that can morph any two images without reference points. It called "differentiable morphing" because neural network here is not used in traditional data to label mapping sense, but as an easy way to solve optimization problem where one image is mapped to another via warp maps that are found by gradient descent. So after maps are found there is no need for the network itself.

Results

example 1 example 2 example 3

Dependencies

Tensorflow 2.1.3 and above.

Usage

Install proper dependencies:

pip install -r requirements.txt

Use the program:

morph.py -s images/img_1.jpg -t images/img_2.jpg

-s Source file
-t Target file

Unnecessary parameters:
-e Number of epochs to train maps on training stage
-a Addition map multiplier
-m Multiplication map multiplier
-w Warp map multiplier
-add_first If true add map would be applied to the source image before mult map. (might work better in some cases)

Idea

Suppose we want to produce one image from another in a way that we use as much useful information as possible, so if two given images share any similarities between them we make use of these similarities.

toy_example

After several trials I found out that the best way to achieve such effect is to use following formula.

formula

Here "Mult map" removes unnecessary parts of an image and shifts color balance, "Add map" creates new colors that are not present in original image and "Warp map" distort an image in some way to reproduce shifting, rotation and scaling of objects. W operation is dense_image_warp method that present in tensorflow and usually used for optical flow estimation tasks.

All maps are found by gradient descent using very simple convolution network. Now, by applying alpha scaling parameter to every map we will get smooth transition from one image to another without any loss of useful data (at least for the given toy example).

transition

Thoughts

Notice that all maps produced generate somewhat meaningful interpolation without any understanding of what exactly present in the images. That means that warp operation might be very useful in images processing tasks. In some sense warp operation might be thought as long range convolution, because it can "grab" data from any point of an image and reshape it in some useful way. Therefore it might be beneficial to use warp operation in classification tasks and might allow networks be less susceptible to small perturbations of the data. But especially, it should be beneficial to use in generation task. It should be much easier to produce new data by combining and perturbating several examples of known data points than to learn a function that represents all data points at ones.

Owner
Alex K
Russian self-taught programmer. Interested in art, procedural generation and generative AI.
Alex K
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023