[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Overview

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Official Pytorch implementation of Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding (AAAI 2022).

Paper is at https://arxiv.org/pdf/2109.04872.pdf.

Paper explanation in Zhihu (in Chinese) is at https://zhuanlan.zhihu.com/p/446203594.

Abstract

Temporal grounding aims to localize a video moment which is semantically aligned with a given natural language query. Existing methods typically apply a detection or regression pipeline on the fused representation with the research focus on designing complicated prediction heads or fusion strategies. Instead, from a perspective on temporal grounding as a metric-learning problem, we present a Mutual Matching Network (MMN), to directly model the similarity between language queries and video moments in a joint embedding space. This new metric-learning framework enables fully exploiting negative samples from two new aspects: constructing negative cross-modal pairs in a mutual matching scheme and mining negative pairs across different videos. These new negative samples could enhance the joint representation learning of two modalities via cross-modal mutual matching to maximize their mutual information. Experiments show that our MMN achieves highly competitive performance compared with the state-of-the-art methods on four video grounding benchmarks. Based on MMN, we present a winner solution for the HC-STVG challenge of the 3rd PIC workshop. This suggests that metric learning is still a promising method for temporal grounding via capturing the essential cross-modal correlation in a joint embedding space.

Updates

Dec, 2021 - We uploaded the code and trained weights for Charades-STA, ActivityNet-Captions and TACoS datasets.

Todo: The code for spatio-temporal video grounding (HC-STVG dataset) will be available soon.

Datasets

  • Download the video feature and the groundtruth provided by 2D-TAN.
  • Extract and put them in a dataset folder in the same directory as train_net.py. For configurations of feature/groundtruth's paths, please refer to ./mmn/config/paths_catalog.py. (ann_file is annotation, feat_file is the video feature)

Dependencies

Our code is developed on the third-party implementation of 2D-TAN, so we have similar dependencies with it, such as:

yacs h5py terminaltables tqdm pytorch transformers 

Quick Start

We provide scripts for simplifying training and inference. For training our model, we provide a script for each dataset (e.g., ./scripts/tacos_train.sh). For evaluating the performance, we provide ./scripts/eval.sh.

For example, for training model in TACoS dataset in tacos_train.sh, we need to select the right config in config and decide the GPU by yourself in gpus (gpu id in your server) and gpun (total number of gpus).

# find all configs in configs/
config=pool_tacos_128x128_k5l8
# set your gpu id
gpus=0,1
# number of gpus
gpun=2
# please modify it with different value (e.g., 127.0.0.2, 29502) when you run multi mmn task on the same machine
master_addr=127.0.0.3
master_port=29511

Similarly, to evaluate the model, just change the information in eval.sh. Our trained weights for three datasets are in the Google Drive.

Citation

If you find our code useful, please generously cite our paper. (AAAI version bibtex will be updated later)

@article{DBLP:journals/corr/abs-2109-04872,
  author    = {Zhenzhi Wang and
               Limin Wang and
               Tao Wu and
               Tianhao Li and
               Gangshan Wu},
  title     = {Negative Sample Matters: {A} Renaissance of Metric Learning for Temporal
               Grounding},
  journal   = {CoRR},
  volume    = {abs/2109.04872},
  year      = {2021}
}

Contact

For any question, please raise an issue (preferred) or contact

Zhenzhi Wang: [email protected]

Acknowledgement

We appreciate 2D-TAN for video feature and configurations, and the third-party implementation of 2D-TAN for its implementation with DistributedDataParallel. Disclaimer: the performance gain of this third-party implementation is due to a tiny mistake of adding val set into training, yet our reproduced result is similar to the reported result in 2D-TAN paper.

Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022