FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

Overview

FaceVerse

FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset

Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang Ma, Liang Li, Yebin Liu CVPR 2022

Tsinghua University & Ant Group

[Dataset] [Project Page]

teaser

Abstract

We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.

results Fig.1 Single-image fitting results using FaceVerse model.

FaceVerse PCA model and pre-trained checkpoints

Please download the zip file of version 0 or version 1 (recommended) and unzip it in the ./data folder.

FaceVerse version 0 [download]: paper version.

v0

Fig.2 Single-image reconstruction results of version 0 (base model, detail model and expression refined final model).

FaceVerse version 1 [download]:

  • Refine the shape of the base PCA model: symmetrical and more detailed.

  • Remove the points inside the mouth.

  • Refine the expression PCA components.

v1

Fig.3 Single-image reconstruction results of version 1 (base model, detail model and expression refined final model).

FaceVerse version 2 [download] (only the PCA base model for video tracking, please use version 1 for image fitting):

  • Fit the expression components to the 52 blendshapes defined by Apple. Please check 'exp_name_list' in faceverse_simple_v2.npy for the mapping relation.

  • Provide a simplification option (normal with 28632 vertices, simplified with 6335 vertices): you can use the selected points of FaceVerse v2 by:

python tracking_online.py  --version 2 --use_simplification
python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2 --use_simplification
  • Refine the shape of the base PCA model: orthogonalization.

Fig.4 Real-time online tracking results (30 fps) of version 2. The real-time version is accelerated by point-base rendering using cuda (this version has not been released).

Requirements

  • Python 3.9
  • PyTorch 1.11.0
  • torchvision 0.11.1
  • PyTorch3D 0.6.0
  • Cuda 11.3
  • ONNX Runtime
  • OpenCV
  • Numpy
  • tqdm
  • ninja

You need to compile the ops provided by stylegan2-pytorch using ninja:

cd third_libs/stylegan_ops
python3 setup.py install

Single-image fitting

Reconstructing a 3D face from a single image. There are three processes: (a) reconstructed by PCA model; (b) refined by the detailed generator; (c) refined by the expression generator.

An example input with a image folder (sampled from the FFHQ dataset):

python3 fit_images.py --version 1 --input example/images --res_folder example/image_results --save_ply

Note: the detailed refinement is based on differentiable rendering, which is quite time-consuming (over 10 minutes).

Video-based tracking using our PCA base model

offline_tracking

Offline tracking input with a video (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_offline.py --input example/videos/test.mp4 --res_folder example/video_results --version 2

Online tracking using your PC camera (our code will crop the face region using the first frame, --use_simplification can be only used for version >= 2):

python tracking_online.py  --version 2

online_tracking

Note: the tracking is based on differentiable rendering and only has 2 fps.

Citation

If you use this dataset for your research, please consider citing:

@InProceedings{wang2022faceverse,
title={FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset},
author={Wang, Lizhen and Chen, Zhiyua and Yu, Tao and Ma, Chenguang and Li, Liang and Liu, Yebin},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR2022)},
month={June},
year={2022},
}

Contact

Acknowledgement & License

The code is partially borrowed from 3DMM-Fitting-Pytorch, stylegan2-pytorch and OpenSeeFace. And many thanks to the volunteers participated in data collection. Our License

Owner
Lizhen Wang
Lizhen Wang
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022