This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Overview

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers

This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers." There are three subdirectories in this repository, the contents of which are described below. This code was tested using PyTorch 1.7.

Synthetic Pairs Matrix

This part of the repository is for running the synthetic pairs matrix experiments in the paper. Here are the commands to run all of the experiments in the paper:

Pairs Matrix 1

python main.py --exp_name pairs_matrix1 --pattern_dir pairs_matrix1 --imgnet_augment

Pairs Matrix 2

python main.py --exp_name pairs_matrix2 --pattern_dir pairs_matrix2 --imgnet_augment

Color Deviation

python main.py --exp_name color_deviation_(your epsilon here) --pattern_dir pairs_matrix1 --hue_perturb blue_circle --hue_perturb_val (your epsilon here) --imgnet_augment

Color Overlap (pattern dirs are already predefined for these. Some overlap values are included, but if you would like to use different ones, you must create them yourself.)

python main.py --exp_name color_overlap_(your overlap here) --pattern_dir color_overlap_(your overlap here) --imgnet_augment

Predictivity

python3 main.py --exp_name predictivity_(your predictivity here) --pattern_dir pairs_matrix1 --pred_drop blue --pred_drop_val (your predictivity here)

When you run one of these experiments, datasets will be created and models trained. Datasets will get created and stored in the directory ./data/exp_name, trained models will get stored in ./models/exp_name, and results will appear in ./results/exp_name. When the experiment is done, there should be a file called master.csv in the directory ./results/exp_name which will contain information including each feature's average preference over the course of the experiment, pixel count, and name. A complete list of commands to generate all data in the paper can be found in the commands.sh file in the pairs_matrix_experiments subdirectory. The training script is adapted from the torchvision training script: https://github.com/pytorch/examples/blob/master/imagenet/main.py.

Texture Bias

Stimuli and helper code is used from the open-sourced code of the paper "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness" (https://github.com/rgeirhos/texture-vs-shape).

To run the experiments from our paper with an ImageNet-trained ResNet-50, you can do the following:

Normal Texture Bias

python main.py

Varying degrees of background interpolation to white (use 0 for completely white, 1 for texture background).

python main.py --bg_interp (your interpolation here)

Resizing

python main.py --bg_interp 0 --size (your fraction of the object size here)

Landscapes

python main.py --bg_interp 0 --landscape

Only full shapes

python main.py --only_complete

Only full shapes masked with masked/interpolated background

python main.py --only_complete --bg_interp (your interpolation here)

A complete list of commands to generate all of the texture bias data from our paper can be found in the commands.sh file in the texture_bias subdirectory.

Excessive Invariance

Running these experiments is a bit more involved. A complete list of commands you must run to reproduce all data and graphs found in the paper can be found in the commands.sh file in the excessive_invariance subdirectory. Comments in the file describe what each step represents.

Repository for the COLING 2020 paper "Explainable Automated Fact-Checking: A Survey."

Explainable Fact Checking: A Survey This repository and the accompanying webpage contain resources for the paper "Explainable Fact Checking: A Survey"

Neema Kotonya 42 Nov 17, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023