Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Overview

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

This is the inference codes of Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation using Tensorflow (paper link). Given an image and its trimap, it estimates the alpha matte and foreground color.

Paper

Setup

Requirements

System: Ubuntu

Tensorflow version: tf1.8, tf1.12 and tf1.13 (It might also work for other versions.)

GPU memory: >= 12G

System RAM: >= 64G

Download codes and models

1, Clone Context-aware Matting repository

git clone https://github.com/hqqxyy/Context-Aware-Matting.git

2, Download our models at here. Unzip them and move it to root of this repository.

tar -xvf model.tgz

After moving, it should be like

.
├── conmat
│   ├── common.py
│   ├── core
│   ├── demo.py
│   ├── model.py
│   └── utils
├── examples
│   ├── img
│   └── trimap
├── model
│   ├── lap
│   ├── lap_fea_da
│   └── lap_fea_da_color
└── README.md

Run

You can first set the image and trimap path by:

export IMAGEPATH=./examples/img/2848300_93d0d3a063_o.png
export TRIMAPPATH=./examples/trimap/2848300_93d0d3a063_o.png

For the model(3) ME+CE+lap in the paper,

python conmat/demo.py \
--checkpoint=./model/lap/model.ckpt \
--vis_logdir=./log/lap/ \
--fgpath=$IMAGEPATH \
--trimappath=$TRIMAPPATH \
--model_parallelism=True

You can find the result at ./log/

For the model(5) ME+CE+lap+fea+DA in the paper. (Please use this model for the real world images)

python conmat/demo.py \
--checkpoint=./model/lap_fea_da/model.ckpt \
--vis_logdir=./log/lap_fea_da/ \
--fgpath=$IMAGEPATH \
--trimappath=$TRIMAPPATH \
--model_parallelism=True

You can find the result at ./log/

For the model(7) ME+CE+lap+fea+color+DA in the paper.

python conmat/demo.py \
--checkpoint=./model/lap_fea_da_color/model.ckpt \
--vis_logdir=./log/lap_fea_da_color/ \
--fgpath=$IMAGEPATH \
--trimappath=$TRIMAPPATH \
--branch_vis=1 \
--branch_vis=1 \
--model_parallelism=True

You can find the result at ./log/

Note

Please note that since the input image is high resolution. You might need to use gpu whose memory is bigger or equal to 12G. You can set the --model_parallelism=True in order to further save the GPU memory.

If you still meet problems, you can run the codes in CPU by disable GPU

export CUDA_VISIBLE_DEVICES=''

, and you need to set --model_parallelism=False. Otherwise, you can resize the image and trimap to a smaller size and then change the vis_comp_crop_size and vis_patch_crop_size accordingly.

You can download our results of Compisition-1k dataset and the real-world image dataset at here.

License

The provided implementation is strictly for academic purposes only. Should you be interested in using our technology for any commercial use, please feel free to contact us.

If you find this code is helpful, please consider to cite our paper.

@inproceedings{hou2019context,
  title={Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation},
  author={Hou, Qiqi and Liu, Feng},
  booktitle = {IEEE International Conference on Computer Vision},
  year = {2019}
}

If you find any bugs of the code, feel free to send me an email: qiqi2 AT pdx DOT edu. You can find more information in my homepage.

Acknowledgments

This projects employs functions from Deeplab V3+ to implement our network. The source images in the demo figure are used under a Creative Commons license from Flickr users Robbie Sproule, MEGA PISTOLO and Jeff Latimer. The background images are from the MS-COCO dataset. The images in the examples are from Composition-1k dataset and the real-world image. We thank them for their help.

Owner
Qiqi Hou
I am a 4th year Ph.D. student at Portland State University. I have broad interests in computer vision, computer graphics, and machine learning.
Qiqi Hou
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022