Julia package for multiway (inverse) covariance estimation.

Overview

TensorGraphicalModels

TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inverse covariance matrices.

Installation

] add https://github.com/ywa136/TensorGraphicalModels.jl

Examples

Please check out a Julia colab created for illustration of some functionalities of the package. Here are some basic examples as well:

Example code for fitting a KP inverse covariance model:

using TensorGraphicalModels

model_type = "kp"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list) #multi-dimensional array (tensor) of dimension d_1 × … × d_K × N
Ψ_hat_list = kglasso(X)

Example code for fitting a KS inverse covariance model:

using TensorGraphicalModels

model_type = "ks"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Ψ_hat_list, _ = teralasso(X_kGram)

Example code for fitting a Sylvester inverse covariance model:

using TensorGraphicalModels

model_type = "sylvester"
sub_model_type = "sb" #this defines the structure of the Kronecker factors, sb = star-block
K = 3
N = 1000
d_list = [5, 10, 15]

X = gen_kronecker_data(model_type, sub_model_type, K, N, d_list, tensorize_out = false) #matrix of dimension d × N

# compute the mode-k Gram matrices (the sufficient statistics for TeraLasso)
X_kGram = [zeros(d_list[k], d_list[k]) for k = 1:K]
Xk = [zeros(d_list[k], Int(prod(d_list) / d_list[k])) for k = 1:K]
for k = 1:K
    for i = 1:N
        copy!(Xk[k], tenmat(reshape(view(X, :, i), d_list), k))
        mul!(X_kGram[k], Xk[k], copy(transpose(Xk[k])), 1.0 / N, 1.0)
    end
end

Psi0 = [sparse(eye(d_list[k])) for k = 1:K]
fun = (iter, Psi) -> [1, time()] # NULL func
lambda = [sqrt(px[k] * log(prod(d_list)) / N) for k = 1:K] 

Ψ_hat_list, _ = syglasso_palm(X, X_kGram, lambda, Psi0, fun = fun)

Example code for fitting a KPCA covariance model:

using TensorGraphicalModels

px = py = 25 #works for K=2 modes only
N = 100
X = zeros((px * py, N))

for i=1:N
    X[:, i] .= vec(rand(MatrixNormal(zeros((px, py)), ScalMat(px, 2.0), ScalMat(py, 4.0))))
end

S = cov(copy(X')) #sample covariance matrix
lambdaL = 20 * (px^2 + py^2 + log(max(px, py, N))) / N
lambdaS = 20 * sqrt(log(px * py)/N)

# robust Kronecker PCA methods using singular value thresholding
Sigma_hat = robust_kron_pca(S, px, py, lambdaL, lambdaS, "SVT"; tau = 0.5, r = 5)
Owner
Wayne Wang
Ph.D. candidate in statistics
Wayne Wang
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021