Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Overview

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster]

Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019. [Project Website]

"With two time steps and each contains 7 RDBs, the proposed GMFN achieves better reconstruction performance compared to state-of-the-art image SR methods including RDN which contains 16 RDBs."

This repository is Pytorch code for our proposed SRFBN.

The code is developed by Paper99 and penguin1214 based on BasicSR, and tested on Ubuntu 16.04/18.04 environment (Python 3.6/3/7, PyTorch 0.4.0/1.0.0/1.0.1, CUDA 8.0/9.0/10.0) with 2080Ti/1080Ti GPUs.

The architecture of our proposed SRFBN. Blue arrows represent feedback connections. The details about our proposed SRFBN can be found in our main paper.

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}

@inproceedings{wang2018esrgan,
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    year = {2018}
}

Contents

  1. Requirements
  2. Test
  3. Train
  4. Results
  5. Acknowledgements

Requirements

  • Python 3 (Anaconda is recommended)
  • skimage
  • imageio
  • Pytorch (Pytorch version >=0.4.1 is recommended)
  • tqdm
  • pandas
  • cv2 (pip install opencv-python)
  • Matlab

Test

Quick start

  1. Clone this repository:

    git clone https://github.com/Paper99/SRFBN_CVPR19.git
  2. Download our pre-trained models from the links below, unzip the models and place them to ./models.

    Model Param. Links
    SRFBN 3,631K [GoogleDrive] [BaiduYun](code:6qta)
    SRFBN-S 483K [GoogleDrive] [BaiduYun](code:r4cp)
  3. Then, cd to SRFBN_CVPR19 and run one of following commands for evaluation on Set5:

    # SRFBN
    python test.py -opt options/test/test_SRFBN_x2_BI.json
    python test.py -opt options/test/test_SRFBN_x3_BI.json
    python test.py -opt options/test/test_SRFBN_x4_BI.json
    python test.py -opt options/test/test_SRFBN_x3_BD.json
    python test.py -opt options/test/test_SRFBN_x3_DN.json
    
    # SRFBN-S
    python test.py -opt options/test/test_SRFBN-S_x2_BI.json
    python test.py -opt options/test/test_SRFBN-S_x3_BI.json
    python test.py -opt options/test/test_SRFBN-S_x4_BI.json
  4. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

Test on standard SR benchmark

  1. If you have cloned this repository and downloaded our pre-trained models, you can first download SR benchmark (Set5, Set14, B100, Urban100 and Manga109) from GoogleDrive or BaiduYun(code:z6nz).

  2. Run ./results/Prepare_TestData_HR_LR.m in Matlab to generate HR/LR images with different degradation models.

  3. Edit ./options/test/test_SRFBN_example.json for your needs according to ./options/test/README.md.

  4. Then, run command:

    cd SRFBN_CVPR19
    python test.py -opt options/test/test_SRFBN_example.json
  5. Finally, PSNR/SSIM values are shown on your screen, you can find the reconstruction images in ./results. You can further evaluate SR results using ./results/Evaluate_PSNR_SSIM.m.

Test on your own images

  1. If you have cloned this repository and downloaded our pre-trained models, you can first place your own images to ./results/LR/MyImage.

  2. Edit ./options/test/test_SRFBN_example.json for your needs according to ./options/test/README.md.

  3. Then, run command:

    cd SRFBN_CVPR19
    python test.py -opt options/test/test_SRFBN_example.json
  4. Finally, you can find the reconstruction images in ./results.

Train

  1. Download training set DIV2K [Official Link] or DF2K [GoogleDrive] [BaiduYun] (provided by BasicSR).

  2. Run ./scripts/Prepare_TrainData_HR_LR.m in Matlab to generate HR/LR training pairs with corresponding degradation model and scale factor. (Note: Please place generated training data to SSD (Solid-State Drive) for fast training)

  3. Run ./results/Prepare_TestData_HR_LR.m in Matlab to generate HR/LR test images with corresponding degradation model and scale factor, and choose one of SR benchmark for evaluation during training.

  4. Edit ./options/train/train_SRFBN_example.json for your needs according to ./options/train/README.md.

  5. Then, run command:

    cd SRFBN_CVPR19
    python train.py -opt options/train/train_SRFBN_example.json
  6. You can monitor the training process in ./experiments.

  7. Finally, you can follow the test pipeline to evaluate your model.

Results

Quantitative Results

Average PSNR/SSIM for scale factors x2, x3 and x4 with BI degradation model. The best performance is shown in red and the second best performance is shown in blue.

Average PSNR/SSIM values for scale factor x3 with BD and DN degradation models. The best performance is shown in red and the second best performance is shown in blue.

More Qualitative Results

Qualitative results with BI degradation model (x4) on “img 004” from Urban100.

Qualitative results with BD degradation model (x3) on “MisutenaideDaisy” from Manga109.

Qualitative results with DN degradation model (x3) on “head” from Set14.

TODO

  • Curriculum learning for complex degradation models (i.e. BD and DN degradation models).

Acknowledgements

  • Thank penguin1214, who accompanies me to develop this repository.
  • Thank Xintao. Our code structure is derived from his repository BasicSR.
  • Thank authors of BasicSR/RDN/EDSR. They provide many useful codes which facilitate our work.
Owner
Zhen Li
Glad to see you.
Zhen Li
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022